已知1999个自然数a1,a2,…,a1999满足条件:其中任意两数的和能被它们的差整除.现设n=a1a2…a1999,证明:n,n+a1,n+a2,…,n+a1999这2000个数仍满足上述条件.-数学

首页 > 考试 > 数学 > 初中数学 > 有理数除法/2019-02-16 / 加入收藏 / 阅读 [打印]

题文

已知1999个自然数a1,a2,…,a1999满足条件:其中任意两数的和能被它们的差整除.现设n=a1a2…a1999,证明:n,n+a1,n+a2,…,n+a1999这2000个数仍满足上述条件.
题型:解答题  难度:中档

答案

因为任意两数的和能被它们的差整除,所以这1999个自然数的奇偶性相同,所以任意两数的和或差为偶数;
由题意知对于1999个自然数a1,a2,…,a1999满足条件:ai-aj|ai+aj(i、j=1、2、3、4…1999且i≠j),
可推出ai-aj只有等于2时,才能任意两数的和能被它们的差整除.
因此对于2000个数n,n+a1,n+a2,…,n+a1999对于任意一个数与n的差为ak(k=1,2,3…1999),显然能整除它们的和;
对于任意一个数与其它数的差为ai-aj=2,其和为(2n+ai+aj),也一定被2整除.
综上所知n,n+a1,n+a2,…,n+a1999这2000个数仍满足条件:其中任意两数的和能被它们的差整除.

据专家权威分析,试题“已知1999个自然数a1,a2,…,a1999满足条件:其中任意两数的和能被..”主要考查你对  有理数除法  等考点的理解。关于这些考点的“档案”如下:

有理数除法

考点名称:有理数除法

  • 有理数除法定义:
    已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。

  • 有理数的除法法则:
    (1)除以一个数,等于乘上这个数的倒数;
    (2)两个数相除,同号得正,异号得负,并把绝对值相除;
    (3)0除以任何一个不等于0的数都等于0。

  • 有理数除法注意:
    ①0不能做除数;
    ②有理数的除法和乘法是互逆运算;
    ③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐