已知1999个自然数a1,a2,…,a1999满足条件:其中任意两数的和能被它们的差整除.现设n=a1a2…a1999,证明:n,n+a1,n+a2,…,n+a1999这2000个数仍满足上述条件.-数学
题文
已知1999个自然数a1,a2,…,a1999满足条件:其中任意两数的和能被它们的差整除.现设n=a1a2…a1999,证明:n,n+a1,n+a2,…,n+a1999这2000个数仍满足上述条件. |
答案
因为任意两数的和能被它们的差整除,所以这1999个自然数的奇偶性相同,所以任意两数的和或差为偶数; 由题意知对于1999个自然数a1,a2,…,a1999满足条件:ai-aj|ai+aj(i、j=1、2、3、4…1999且i≠j), 可推出ai-aj只有等于2时,才能任意两数的和能被它们的差整除. 因此对于2000个数n,n+a1,n+a2,…,n+a1999对于任意一个数与n的差为ak(k=1,2,3…1999),显然能整除它们的和; 对于任意一个数与其它数的差为ai-aj=2,其和为(2n+ai+aj),也一定被2整除. 综上所知n,n+a1,n+a2,…,n+a1999这2000个数仍满足条件:其中任意两数的和能被它们的差整除. |
据专家权威分析,试题“已知1999个自然数a1,a2,…,a1999满足条件:其中任意两数的和能被..”主要考查你对 有理数除法 等考点的理解。关于这些考点的“档案”如下:
有理数除法
考点名称:有理数除法
- 有理数除法定义:
已知两个因数的积与其中一个因数,求另一个因数的运算叫做有理数的除法。 有理数的除法法则:
(1)除以一个数,等于乘上这个数的倒数;
(2)两个数相除,同号得正,异号得负,并把绝对值相除;
(3)0除以任何一个不等于0的数都等于0。- 有理数除法注意:
①0不能做除数;
②有理数的除法和乘法是互逆运算;
③在做除法运算时,根据同号得正,异号的负的法则先确定符号,在把绝对值相除,若在算式中有带分数,一般化成假分数进行计算,若不能整除,则除法运算都转化为乘法运算。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:设一个自然数n的所有正约数的积为24?312,则n的值为______.-数学
下一篇:若两个正整数a、b的最大公约数比最小公倍数小23,且a≤b,则这样的数对(a,b)共有______个.-数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |