二次函数图像过A(2,1)B(0,1)和C(1,-1)三点。(1)求该二次函数的解析式;(2)该二次函数图像向下平移4个单位,向左平移2个单位后,原二次函数图像上的A、B两点相应平移到A1、-九年级数学


例:已知抛物线与x轴交点的横坐标为-2和1 ,且通过点(2,8),求二次函数的解析式。
点拨:
解设函数的解析式为y=a(x+2)(x-1),
∵过点(2,8),
∴8=a(2+2)(2-1)。
解得a=2,
∴抛物线的解析式为:
y=2(x+2)(x-1),
即y=2x2+2x-4。

②典型例题二:告诉抛物线与x轴的两个交点之间的距离和对称轴,可利用抛物线的对称性求解。
例:已知二次函数的顶点坐标为(3,-2),并且图象与x轴两交点间的距离为4,求二次函数的解析式。
点拨:
在已知抛物线与x轴两交点的距离和顶点坐标的情况下,问题比较容易解决.由顶点坐标为(3,-2)的条件,易知其对称轴为x=3,再利用抛物线的对称性,可知图象与x轴两交点的坐标分别为(1,0)和(5,0)。此时,可使用二次函数的交点式,得出函数解析式。

2.巧用顶点式:
顶点式y=a(x-h)2+k(a≠0),其中(h,k)是抛物线的顶点。当已知抛物线顶点坐标或对称轴,或能够先求出抛物线顶点时,设顶点式解题十分简洁,因为其中只有一个未知数a。在此类问题中,常和对称轴,最大值或最小值结合起来命题。在应用题中,涉及到桥拱、隧道、弹道曲线、投篮等问题时,一般用顶点式方便.
①典型例题一:告诉顶点坐标和另一个点的坐标,直接可以解出函数顶点式。
例:已知抛物线的顶点坐标为(-1,-2),且通过点(1,10),求此二次函数的解析式。
点拨:
解∵顶点坐标为(-1,-2),
故设二次函数解析式为y=a(x+1)2-2 (a≠0)。
把点(1,10)代入上式,得10=a·(1+1)2-2。
∴a=3。
∴二次函数的解析式为y=3(x+1)2-2,即y=3x2+6x+1。

②典型例题二:
如果a>0,那么当 时,y有最小值且y最小=
如果a<0,那么,当时,y有最大值,且y最大=
告诉最大值或最小值,实际上也是告诉了顶点坐标,同样也可以求出顶点式。
例:已知二次函数当x=4时有最小值-3,且它的图象与x轴两交点间的距离为6,求这个二次函数的解析式。
点拨:
析解∵二次函数当x=4时有最小值-3,∴顶点坐标为(4,-3),对称轴为直线x=4,抛物线开口向上。
由于图象与x轴两交点间的距离为6,根据图象的对称性就可以得到图象与x轴两交点的坐标是(1,0)和(7,0)。
∴抛物线的顶点为(4,-3)且过点(1,0)。
故可设函数解析式为y=a(x-4)2-3。
将(1,0)代入得0=a(1-4)2-3, 解得a=13.
∴y=13(x-4)2-3,即y=13x2-83x+73。
③典型例题三:告诉对称轴,相当于告诉了顶点的横坐标,综合其他条件,也可解出。
例如:
(1)已知二次函数的图象经过点A(3,-2)和B(1,0),且对称轴是直线x=3.求这个二次函数的解析式.
(2)已知关于x的二次函数图象的对称轴是直线x=1,图象交y轴于点(0,2),且过点(-1,0),求这个二次函数的解析式.
(3)已知抛物线的对称轴为直线x=2,且通过点(1,4)和点(5,0),求此抛物线的解析式.
(4)二次函数的图象的对称轴x=-4,且过原点,它的顶点到x轴的距离为4,求此函数的解析式.

④典型例题四:利用函数的顶点式,解图像的平移等问题非常方便。
例:把抛物线y=ax2+bx+c的图像向右平移3 个单位, 再向下平移2 个单位, 所得图像的解析式是y=x2-3x+5, 则函数的解析式为_______。
点拨:
解先将y=x2-3x+5化为y=(x-32)2+5-94, 即y=(x-32)2+114。
∵它是由抛物线的图像向右平移3 个单位, 再向下平移2 个单位得到的,
∴原抛物线的解析式是y=(x-32+3)2+114+2=(x+32)2+194=x2+3x+7。

考点名称:锐角三角函数的定义

  • 锐角三角函数
    锐角角A的正弦(sin),余弦(cos)和正切(tan),余切(cot)以及正割(sec),余割(csc)都叫做角A的锐角三角函数。
    初中学习的 锐角三角函数值的定义方法是在直角三角形中定义的,所以在初中阶段求锐角的三角函数值,都是通过构造直角三角形来完成的,即把这个角放到某个直角三角形中。所谓锐角三角函数是指:我们初中研究的都是锐角的三角函数。初中研究的锐角的三角函数为:正弦(sin),余弦(cos),正切(tan)。
    正弦:在直角三角形中,锐角A的对边与斜边的比叫做∠A的正弦,记作sinA,即
    余弦:在直角三角形中,锐角A的邻边与斜边的比叫做∠A的余弦,记作cosA,即
    正切:在直角三角形中,锐角A的对边与邻边的比叫做∠A的正切,记作tanA,即
    锐角A的正弦、余弦、正切都叫做A的锐角三角函数。

  • 锐角三角函数的增减性:
    1.锐角三角函数值都是正值
    2.当角度在0°~90°间变化时,
    正弦值随着角度的增大(或减小)而增大(或减小) ,余弦值随着角度的增大(或减小)而减小(或增大) ;
    正切值随着角度的增大(或减小)而增大(或减小) ,余切值随着角度的增大(或减小)而减小(或增大);
    正割值随着角度的增大(或减小)而增大(或减小),余割值随着角度的增大(或减小)而减小(或增大)。
    3.当角度在0°≤A≤90°间变化时,0≤sinA≤1, 1≥cosA≥0;当角度在0°<A0, cotA>0。

  • 锐角三角函数的关系式:
    同角三角函数基本关系式
    tanα·cotα=1
    sin2α·cos2α=1
    cos2α·sin2α=1
    sinα/cosα=tanα=secα/cscα
    cosα/sinα=cotα=cscα/secα
    (sinα)2+(cosα)2=1
    1+tanα=secα
    1+cotα=cscα

    诱导公式
    sin(-α)=-sinα
    cos(-α)=cosα
    tan(-α)=-tanα
    cot(-α)=-cotα
    sin(π/2-α)=cosα
    cos(π/2-α)=sinα
    tan(π/2-α)=cotα
    cot(π/2-α)=tanα
    sin(π/2+α)=cosα
    cos(π/2+α)=-sinα
    tan(π/2+α)=-cotα
    cot(π/2+α)=-tanα
    sin(π-α)=sinα
    cos(π-α)=-cosα
    tan(π-α)=-tanα
    cot(π-α)=-cotα
    sin(π+α)=-sinα
    cos(π+α)=-cosα
    tan(π+α)=tanα
    cot(π+α)=cotα
    sin(3π/2-α)=-cosα
    cos(3π/2-α)=-sinα
    tan(3π/2-α)=cotα
    cot(3π/2-α)=tanα
    sin(3π/2+α)=-cosα
    cos(3π/2+α)=sinα
    tan(3π/2+α)=-cotα
    cot(3π/2+α)=-tanα
    sin(2π-α)=-sinα
    cos(2π-α)=cosα
    tan(2π-α)=-tanα
    cot(2π-α)=-cotα
    sin(2kπ+α)=sinα
    cos(2kπ+α)=cosα
    tan(2kπ+α)=tanα
    cot(2kπ+α)=cotα(其中k∈Z)

    二倍角、三倍角的正弦、余弦和正切公式
    Sin(2α)=2sinαcosα
    Cos(2α)=(cosα)2-(sinα)2=2(cosα)2-1=1-2(sinα)2
    Tan(2α)=2tanα/(1-tanα)
    sin(3α)=3sinα-4sin3α=4sinα·sin(60°+α)sin(60°-α)
    cos(3α)=4cos3α-3cosα=4cosα·cos(60°+α)cos(60°-α)
    tan(3α)=(3tanα-tan3α)/(1-3tan2α)=tanαtan(π/3+α)tan(π/3-α)
    和差化积、积化和差公式
    sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2]
    sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]
    cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2]
    cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]
    sinαcosβ=-[sin(α+β)+sin(α-β)]
    sinαsinβ=-[1][cos(α+β)-cos(α-β)]/2
    cosαcosβ=[cos(α+β)+cos(α-β)]/2
    sinαcosβ=[sin(α+β)+sin(α-β)]/2
    cosαsinβ=[sin(α+β)-sin(α-β)]/2

考点名称:平移

  • 定义:
    将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐