矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D。(1)求点D的坐标;(2)若抛物线经过D、A两点,试确定此抛物线的函数表达-九年级数学

题文

矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(6,0)、C(0,3),直线与BC边相交于点D。

(1)求点D的坐标;
(2)若抛物线经过D、A两点,试确定此抛物线的函数表达式;
(3)若P为x轴上方(2)中抛物线上一点,求△POA面积的最大值;
(4)设(2)中抛物线的对称轴与直线OD交于点M,点Q为对称轴上一动点,以Q、O、M为顶点的三角形与△OCD相似,求符合条件的Q点的坐标。
题型:解答题  难度:偏难

答案

解:(1)直线与BC交于点D(x,3),
把y=3代入中得,x=4,
∴D(4,3)。
(2)∵抛物线y=ax2+bx经过D(4,3)、A(6,0)两点,
把x=4,y=3;x=6,y=0分别代入y=ax2+bx中得,
,解得:
∴抛物线的解析式为:
(3)因△POA底边OA=6,
∴当S△POA有最大值时,点P须位于抛物线的最高点,
<0,
∴抛物线顶点恰为最高点,

的最大值为
(4)抛物线的对称轴与x轴的交点Q1符合条件,
∵CB∥OA,∠Q1OM=∠CDO,
∴Rt△Q1OM∽Rt△CDO,
,该点坐标为Q1(3,0),
过点O作OD的垂线交抛物线的对称轴于点Q2
∵对称轴平行于y轴,
∴∠Q2MO=∠DOC,
 ∴Rt△Q2MO∽Rt△DOC,
在Rt△Q2Q1O和Rt△DCO中,
Q1O=CO=3,∠Q2=∠ODC,
∴Rt△Q2Q1O≌Rt△DCO,
∴CD=Q1Q2=4,
∵点Q2位于第四象限,
∴Q2(3,-4),
因此,符合条件的点有两个,
分别是Q1(3,0),Q2(3,-4)。

据专家权威分析,试题“矩形OABC在直角坐标系中的位置如图所示,A、C两点的坐标分别为A(..”主要考查你对  求二次函数的解析式及二次函数的应用,一次函数的图像,矩形,矩形的性质,矩形的判定,相似三角形的判定  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用一次函数的图像矩形,矩形的性质,矩形的判定相似三角形的判定

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

    由一般式变为交点式的步骤:
    二次函数
    ∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
    ∴y=ax2+bx+c
    =a(x2+b/ax+c/a)
    =a[x2-(x1+x2)x+x1?x

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐