如图,以矩形OABC的两边OA和OC所在直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4)。将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后-九年级数学
题文
如图,以矩形OABC的两边OA和OC所在直线为x轴、y轴建立平面直角坐标系,A点的坐标为(3,0),C点的坐标为(0,4)。将矩形OABC绕O点逆时针旋转,使B点落在y轴的正半轴上,旋转后的矩形为OA1B1C1,BC,A1B1相交于点M。 (1)求点B1的坐标与线段B1C的长; (2)将图a中的矩形OA1B1C1沿y轴向上平移,如图b,矩形PA2B2C2是平移过程中的某一位置,BC、A2B2相交 于点M1,点P运动到C点停止。设点P运动的距离x,矩形PA2B2C2与原矩形OABC重叠部分的面积为y,求y关于x的函数关系式,并写出x的取值范围; (3)如图c,当点P运动到点C时,平移后的矩形为PA3B3C3,请你思考如何通过图形变换使矩形PA3B3C3与原矩形OABC重合,请简述你的做法。 |
答案
(1)OA1=OA=3, A1B1=AB=OC=4 ∴OB1=5 ∴B(0,5) B1C=5-4=1 (2)① S重叠=S阴=S△PA2B2-S△M1B2C ∵OP=x ,PB2=5 ∴OB2=5+x 又∵OC=4 ∴B2C=x+1 △A2B2P∽△CB2M1 ∴ ∴ ∴S△CB2M1= (x+1)2 ∴y= 当M1与A2重合时, M1B22=B2C·BP ∴42= B2C·5 ∴B2C= ∴x= ∴0≤x≤ ②PC=4-x △PCM1∽△PA2B2 ∴ ∴ ∴S△PCM1= ∴y= (<x<4) ∴综上所述y= (3)将矩形PA3B3C3绕点O顺时针旋转∠B3PA3的度数,使PA3 与PB重合(或PC3与y轴重合),再把所得图形向下平行4个单位长度,即与矩形OABC重合,使PA3与OA重合。(答案不唯一) |
据专家权威分析,试题“如图,以矩形OABC的两边OA和OC所在直线为x轴、y轴建立平面直角坐..”主要考查你对 求二次函数的解析式及二次函数的应用,矩形,矩形的性质,矩形的判定,图形旋转,平移 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用矩形,矩形的性质,矩形的判定图形旋转平移
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |