如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.(1)求抛物线的解析式.(2)已知AD=AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以-九年级数学
题文
如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点. (1) 求抛物线的解析式. (2)已知AD = AB(D在线段AC上),有一动点P从点A沿线段AC以每秒1个单位长度的速度移动;同时另一个动点Q以某一速度从点B沿线段BC移动,经过t 秒的移动,线段PQ被BD垂直平分,求t的值; (3)在(2)的情况下,抛物线的对称轴上是否存在一点M,使MQ+MC的值最小?若存在,请求出点M的坐标;若不存在,请说明理由. (注:抛物线的对称轴为) |
答案
(1)解:设抛物线的解析式为y = a (x +3 )(x - 4) 因为B(0,4)在抛物线上, 所以4 = a ( 0 + 3 ) ( 0 - 4 ) 解得a= - 所以抛物线解析式为 (2)连接DQ,在Rt△AOB中, 所以AD=AB= 5,AC=AD+CD=3 + 4 = 7,CD = AC - AD = 7 - 5 = 2 因为BD垂直平分PQ, 所以PD=QD,PQ⊥BD, 所以∠PDB=∠QDB 因为AD=AB, 所以∠ABD=∠ADB,∠ABD=∠QDB, 所以DQ∥AB 所以∠CQD=∠CBA.∠CDQ=∠CAB, 所以△CDQ∽ △CAB 即 所以AP=AD - DP = AD - DQ=5 -= ,, 所以t的值是 (3)答对称轴上存在一点M,使MQ+MC的值最小 理由:因为抛物线的对称轴为 所以A(- 3,0),C(4,0)两点关于直线对称 连接AQ交直线于点M,则MQ+MC的值最小, 过点Q作QE⊥x轴,于E, 所以∠QED=∠BOA=90。 DQ∥AB,∠ BAO=∠QDE, △DQE ∽△ABO, 即 所以QE=,DE=, 所以OE = OD + DE=2+=,所以Q(,) 设直线AQ的解析式为 则由此得 所以直线AQ的解析式为 联立由此得 所以M 则:在对称轴上存在点M,使MQ+MC的值最小. |
据专家权威分析,试题“如图:抛物线经过A(-3,0)、B(0,4)、C(4,0)三点.(1)求抛物线的解..”主要考查你对 求二次函数的解析式及二次函数的应用 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:在平面直角坐标系xOy中,抛物线与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,点B的坐标为(3,0),将直线y=kx沿y轴向上平移3个单位长度后恰好经过B,C两点.(1)求直线BC-九年级数学
下一篇:枇杷是莆田名果之一,某果园有100棵枇杷树.每棵平均产量为40千克,现准备多种一些枇杷树以提高产量,但是如果多种树,那么树与树之间的距离和每一棵数接受的阳光就会减少,根-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |