已知矩形纸片的长为4,宽为3,以长所在的直线为x轴,O为坐标原点建立平面直角坐标系;点P是OA边上的动点(与点不重合),现将沿PC翻折得到,再在边上选取适当的点D,将沿翻折,-九年级数学
题文
已知矩形纸片的长为4,宽为3,以长所在的直线为x轴,O为坐标原点建立平面直角坐标系;点P是OA边上的动点(与点不重合),现将沿PC翻折得到,再在边上选取适当的点D,将沿翻折,得到,使得直线重合. (1)若点E落在边上,如图①,求点的坐标,并求过此三点的抛物线的函数关系式; (2)若点E落在矩形纸片的内部,如图②,设当x为何值时,y取得最大值? (3)在(1)的情况下,过点三点的抛物线上是否存在点Q,使是以为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q的坐标。 |
答案