如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线x=上。(1)求抛-九年级数学
题文
如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上,O为坐标原点,A、B两点的坐标分别为(-3,0)、(0,4),抛物线y=x2+bx+c经过B点,且顶点在直线x=上。 |
(1)求抛物线对应的函数关系式; (2)若△DCE是由△ABO沿x轴向右平移得到的,当四边形ABCD是菱形时,试判断点C和点D是否在该抛物线上,并说明理由。 (3)若M点是CD所在直线下方该抛物线上的一个动点,过点M作MN平行于y轴交CD于点N。设点M的横坐标为t,MN的长度为l。求l与t之间的函数关系式,并求l取最大值时,点M的坐标。 |
答案
解:(1)由题意,可设所求抛物线对应的函数关系式为y=+m ∴4=×(-)2+m ∴m=- 所求函数关系式为y=-=x2-x+4; (2)在Rt△ABO中,OA=3,OB=4 ∴ ∵四边形ABCD是菱形 ∴BC=CD=DA=AB=5 ∴C、D两点的坐标分别是(5,4)、(2,0) 当x=5时,y=+4=4 当x=2时,y=+4=0 ∴点C和点D在所求抛物线上; (3)设直线CD对应的函数关系式为,则 解得:k=,b=- ∴y=x- ∵MN∥y轴,M点的横坐标为t ∴N点的横坐标也为t 则yM=+4 yN= ∴l=yN-yM=- ∵-<0 ∴当t=时,l最大= 此时点M的坐标为(,)。 |
据专家权威分析,试题“如图,Rt△ABO的两直角边OA、OB分别在x轴的负半轴和y轴的正半轴上..”主要考查你对 求二次函数的解析式及二次函数的应用,菱形,菱形的性质,菱形的判定 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用菱形,菱形的性质,菱形的判定
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:经过原点的抛物线是[]A.y=2x2+xB.y=2(x+1)2C.y=2x2-1D.y=2x2+1-九年级数学
下一篇:如图,已知二次函数y=-x2+bx+c的图象经过A(2,0)、B(0,-6)两点。(1)求这个二次函数的解析式;(2)设该二次函数的对称轴与x轴交于点C,连结BA、BC,求△ABC的面积。-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |