如图,已知二次函数y=ax2+2x+3的图象与x轴交于A点和B点(点B在x轴的正半轴上),与y轴交于C点,其顶点为D,直线DC的函数关系式为y=kx+3,∠OBC=45°。(1)求a,k的值;(2)探究:在-九年级数学

题文

如图,已知二次函数y=ax2+2x+3的图象与x轴交于A点和B点(点B 在x轴的正半轴上),与y轴交于C点,其顶点为D,直线DC的函数关系式为y=kx+3,∠OBC=45°。
(1)求a,k的值;
(2)探究:在该二次函数的图象上是否存在点P(点P与B,C不重合),使得△PBC是以BC为一条直角边的直角三角形?若存在,求出点D的坐标;若不存在,请你说明理由。

题型:解答题  难度:中档

答案

解:(1)由直线y=kx+3与y轴交于点C,得点 C(0,3),
∴∠OBC=45°,
∴OB=CC=3.7,
点B(3,0),
点B(3,0)在二次函数y=ax2+2x+3的图象上,
∴9a+6+3=0,
∴a=-1,
∴y=-x+2+3=-(x-1)2+4,
∴顶点D(1,4),
k==1;
(2)在二次函数y=-x2+2x+3的图象上存在点P,使得△PBC是以BC为一条直角边的直角三角形。
①由(1)可知,直线y=x+3与z轴的交点为E(-3,0),
∴OE=C =3
∴∠CEO=45°,∵∠OBC=45°,
∴∠ECB=90°,
∴∠DCB=90
∴△DCB是以BC为一条直角边的直角三角形,且点D(l,4)在二次函数的图象上,则点D即为所求的P点,
②设∠CBP=90°,点P在二次函数y=-x2+2x+3的图象上,则△PBC是以BC为一条直角边的直角三角形,
∵∠CBO=45°,
∴∠OBP=45°
设直线BP与y轴交于点F,则F(0,-3),
∴直线BP的表达式为y=x-3,
解方程
由题意得,点P(-2,-5)为所求,
综合①②,得二次函数y=-x2+2x+3的图象上存在点P(1,4)或P(-2,-5),使得△PBC是以BC为一条直角边的直角三角形。

据专家权威分析,试题“如图,已知二次函数y=ax2+2x+3的图象与x轴交于A点和B点(点B在x轴..”主要考查你对  求二次函数的解析式及二次函数的应用,直角三角形的性质及判定  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用直角三角形的性质及判定

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

    由一般式变为交点式的步骤:
    二次函数
    ∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
    ∴y=ax2+bx+c
    =a(x2+b/ax+c/a)
    =a[x2-(x1+x2)x+x1?x2]
    =a(x-x1)(x-x2).
    重要概念:
    a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;
    a<0时,开口方向向下。a的绝对值可以决定开口大小。
    a的绝对值越大开口就越小,a的绝对值越小开口就越大。
    能灵活运用这三种方式求二次函数的解析式;
    能熟练地运用二次函数在几何领域中的应用;
    能熟练地运用二次函数解决实际问题。

  • 二次函数的其他表达形式:
    ①牛顿插值公式:
    f(x)=f[x0]+f[x0,x1](x-x0)+f[x0,x1,x2](x-x0)(x-x1)+...f[x0,...xn](x-x0)...(x-xn-1)+Rn(x)由此可引导出交点式的系数a=y/(x·x)(y为截距) 
    二次函数表达式的右边通常为二次三项式。

    双根式
    y=a(x-x1)*(x-x2)
    若ax2+bx+c=0有两个实根x1,x2,则y=a(x-x1)(x-x2)此抛物线的对称轴为直线x=(x1+x2)/2。

    ③三点式
    已知二次函数上三个点,(x1,f(x1))(x2,f(x2))(x3,f(x3))
    则f(x)=f(x3)(x-x1)(x-x2)/(x3-x1)(x3-x2)+f(x2)(x-x1)*(x-x3)/(x2-x1)(x2-x3)+f(x1)(x-x2)(x-x3)/(x1-x2
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐