已知二次函数y=x2-mx+m-2。(1)求证:无论m为任何实数,该二次函数的图象与x轴都有两个交点;(2)当该二次函数的图象经过点(3,6)时,求二次函数的解析式;(3)将直线y=x向下平移-九年级数学

2+bx+c=0(a≠0)。
那么一元二次方程的解就是二次函数图像与x轴焦点的横坐标,因此,二次函数图像与x轴的交点情况决定一元二次方程根的情况。
1、从形式上看:
二次函数:y=ax2+bx+c  (a≠0)
一元二次方程:ax2+bx+c=0  (a≠0)
2、从内容上看:
二次函数表示的是一对(x,y)之间的关系,它有无数对解;一元二次方程表示的是未知数x的值,最多只有2个值
3、相互关系:
二次函数与x轴交点的横坐标就是相应的一元二次方程的根。
如:y=x2-4x+3与x轴的交点是(1,0)、(3,0),则一元二次方程x2-4x+3=0的根是x=1或x=3

  • 二次函数交点与二次方程根的关系:
    抛物线y=ax2+bx+c与x轴的交点个数可由一元二次方程ax2+bx+c=0的根的情况说明:
    1、若△>0,则一元二次方程ax2+bx+c=0有两个不等的实数根,则抛物线y=ax2+bx+c与x轴有两个交点---相交;
    2、若△=0,则一元二次方程ax2+bx+c=0有两个相等的实数根,则抛物线y=ax2+bx+c与x轴有唯一公共点---相切(顶点);
    3、若△<0,则一元二次方程ax2+bx+c=0没有实数根,则抛物线y=ax2+bx+c与x轴没有公共点--相离。
    若抛物线y=ax2+bx+c与轴的两个交点坐标分别是A(x1,0),B(x2,0),则x1+x2=-,x1x2=

  • 点拨:
    ①解一元二次方程实质上就是求当二次函数值为0时的自变量x的取值,反映在图像上就是求抛物线与x轴交点的横坐标。
    ②若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2(x1<x2),则抛物线y=ax2+bx+c与x轴的交点为(x1,0),(x2,0),对称轴为x=x1+x2/2。
    ③若a>0,当x<x1,或x>x2时,y>0;当x1<x<x2时,y<0。
    若a< 0,当x1<x<x2时,y>0;当x<x1或x>x2时,y<0。
    ④如果抛物线y=ax2+bx+c与x轴交于M(x1,0),N(x2,0),则MN=√b2-4ac/|a|。

  • 考点名称:轴对称

    • 轴对称的定义:
      把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合 ,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴,折叠后重合的点是对应点,叫做对称点。轴对称和轴对称图形的特性是相同的,对应点到对称轴的距离都是相等的。

    • 轴对称的性质:
      (1)对应点所连的线段被对称轴垂直平分;
      (2)对应线段相等,对应角相等;
      (3)关于某直线对称的两个图形是全等图形。

    • 轴对称的判定:
      如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
      这样就得到了以下性质:
      1.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线。
      2.类似地,轴对称图形的对称轴,是任何一对对应点所连线段的垂直平分线。
      3.线段的垂直平分线上的点与这条线段的两个端点的距离相等。 
      4.对称轴是到线段两端距离相等的点的集合。

      轴对称作用:
      可以通过对称轴的一边从而画出另一边。
      可以通过画对称轴得出的两个图形全等。
      扩展到轴对称的应用以及函数图像的意义。

      轴对称的应用:
      关于平面直角坐标系的X,Y对称意义
      如果在坐标系中,点A与点B关于直线X对称,那么点A的横坐标不变,纵坐标为相反数。
      相反的,如果有两点关于直线Y对称,那么点A的横坐标为相反数,纵坐标不变。

      关于二次函数图像的对称轴公式(也叫做轴对称公式 )
      设二次函数的解析式是 y=ax2+bx+c
      则二次函数的对称轴为直线 x=-b/2a,顶点横坐标为 -b/2a,顶点纵坐标为 (4ac-b2)/4a

      在几何证题、解题时,如果是轴对称图形,则经常要添设对称轴以便充分利用轴对称图形的性质。
      譬如,等腰三角形经常添设顶角平分线;
      矩形和等腰梯形问题经常添设对边中点连线和两底中点连线;
      正方形,菱形问题经常添设对角线等等。
      另外,如果遇到的图形不是轴对称图形,则常选择某直线为对称轴,补添为轴对称图形,
      或将轴一侧的图形通过翻折反射到另一侧,以实现条件的相对集中。

    考点名称:勾股定理

    • 勾股定理:
      直角三角形两直角边(即“勾”,“股”)边长平方和等于斜边(即“弦”)边长的平方。也就是说,如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
      勾股定理只适用于直角三角形,应用于解决直角三角形中的线段求值问题。

    • 定理作用
      ⑴勾股定理是联系数学中最基本也是最原始的两个对象——数与形的第一定理。
      ⑵勾股定理导致不可通约量的发现,从而深刻揭示了数与量的区别,即所谓“无理数"与有理数的差别,这就是所谓第一次数学危机。
      ⑶勾股定理开始把数学由计算与测量的技术转变为证明与推理的科学。
      ⑷勾股定理中的公式是第一个不定方程,也是最早得出完整解答的不定方程,它一方面引导到各式各样的不定方程,包括著名的费尔马大定理,另一方面也为不定方程的解题程序树立了一个范式。

    • 勾股定理的应用:
      数学
      从勾股定理出发开平方、开立方、求圆周率等,运用勾股定理数学家还发现了无理数。
      勾股定理在几何学中的实际应用非常广泛,较早的应用案例有《九章算术》中的一题:“今有池,芳一丈,薛生其中央,出水一尺,引薛赴岸,适与岸齐,问水深几何?答曰:"一十二尺"。

      生活
      勾股定理在生活中的应用也较广泛,举例说明如下:
      1、挑选投影设备时需要选择最佳的投影屏幕尺寸。以教室为例,最佳的屏幕尺寸主要取决于使用空间的面积,从而计划好学生座位的多少和位置的安排。选购的关键则是选择适合学生的屏幕而不是选择适合投影机的屏幕,也就是说要把学生的视觉感受放在第一位。一般来说在选购时可参照三点:
      第一,屏幕高度大约等于从屏幕到学生最后一排座位的距离的1/6;
      第二,屏幕到第一排座位的距离应大于2倍屏幕的高度;
      第三,屏幕底部应离观众席所在地面最少122厘米。
      屏幕的尺寸是以其对角线的大小来定义的。一般视频图像的宽高比为4:3,教育幕为正方形。如一个72英寸的屏幕,根据勾股定理,很快就能得出屏幕的宽为1.5m,高为1.1m。
      2、2005年珠峰高度复测行动。
      测量珠峰的一种方法是传统的经典测量方法,就是把高程引到珠峰脚下,当精确高程传递至珠峰脚下的6个峰顶交会测量点时,通过在峰顶竖立的测量觇标,运用“勾股定理”的基本原理测定珠峰高程,配合水准测量、三角测量、导线测量等方式,获得的数据进行重力、大气等多方面改正计算,最终得到珠峰高程的有效数据。
      通俗来说,就是分三步走:
      第一步,先在珠峰脚下选定较容易的、能够架设水准仪器的测量点,先把这些点的精确高程确定下来;
      第二步,在珠峰峰顶架起觇标,运用三角几何学中“勾股定理”的基本原理,推算出珠峰峰顶相对于这几个点的高程差;
      第三步,获得的高程数据要进行重力、大气等多方面的改正计算,最终确定珠峰高程测量的有效数据。

    考点名称:平移

    • 定义:
      将一个图形沿某个方向移动一定的距离,这样的图形运动称为平移。平移是图形变换的一种基本形式。平移不改变图形的形状和大小,平移可以不是水平的。

    • 平移基本性质:
      经过平移,对应线段平行(或共线)且相等,对应角相等,对应点所连接的线段平行且相等;
      平移变换不改变图形的形状、大小和方向(平移前后的两个图形是全等形)。
      (1)图形平移前后的形状和大小没有变化,只是位置发生变化;
      (2)图形平移后,对应点连成的线段平行(或在同一直线上)且相等
      (3)多次连续平移相当于一次平移。
      (4)偶数次对称后的图形等于平移后的图形。
      (5)平移是由方向和距离决定的。
      这种将图形上的所有点都按照某个方向作相同距离的位置移动,叫做图形的平移运动,简称为平移

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐