如图,已知抛物线y=x2+bx+c与x轴交于A、B两点(A点在B点左侧),与y轴交于点C(0,-3),对称轴是直线x=1,直线BC与抛物线的对称轴交于点D。(1)求抛物线的函数表达式;(2)求直线-九年级数学


(2)理清题意是采用分段函数解决问题的关键。

生活中的应用:

1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 考点名称:直角三角形的性质及判定

    • 直角三角形定义:
      有一个角为90°的三角形,叫做直角三角形。直角三角形可用Rt△表示,如直角三角形ABC写作Rt△ABC。

    • 直角三角形性质:
      直角三角形是一种特殊的三角形,它除了具有一般三角形的性质外,具有一些特殊的性质:
      性质1:直角三角形两直角边a,b的平方和等于斜边c的平方。即。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
      性质2:在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
      性质3:在直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。
      性质4:直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
      性质5:

      如图,Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理如下:
      (1)(AD)2=BD·DC。
      (2)(AB)2=BD·BC。
      (3)(AC)2=CD·BC。
      性质6:在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
      在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
      性质7:如图,1/AB2+1/AC2=1/AD2
      性质8:直角三角形被斜边上的高分成的两个直角三角形和原三角形相似。
      性质9:直角三角形直角上的角平分线与斜边的交点D 则    BD:DC=AB:AC

    • 直角三角形的判定方法:
      判定1:定义,有一个角为90°的三角形是直角三角形。
      判定2:判定定理:以a、b、c为边的三角形是以c为斜边的直角三角形。如果三角形的三边a,b,c满足,那么这个三角形就是直角三角形。(勾股定理的逆定理)。
      判定3:若一个三角形30°内角所对的边是某一边的一半,则这个三角形是以这条长边为斜边的直角三角形。
      判定4:两个锐角互为余角(两角相加等于90°)的三角形是直角三角形。
      判定5:若两直线相交且它们的斜率之积互为负倒数,则两直线互相垂直。那么
      判定6:若在一个三角形中一边上的中线等于其所在边的一半,那么这个三角形为直角三角形。
      判定7:一个三角形30°角所对的边等于这个三角形斜边的一半,则这个三角形为直角三角形。(与判定3不同,此定理用于已知斜边的三角形。)

    考点名称:解直角三角形

    • 概念:
      在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的已知元素,求出所有未知元素的过程叫做解直角三角形。

      解直角三角形的边角关系:
      在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别为a,b,c,
      (1)三边之间的关系:(勾股定理);
      (2)锐角之间的关系:∠A+∠B=90°;
      (3)边角之间的关系:

    • 解直角三角形的函数值:

      锐角三角函数:
      sinA=a/c,cosA=b/c,tanA=a/b,cotA=b/a
      (1)互余角的三角函数值之间的关系:
      若∠ A+∠ B=90°,那么sinA=cosB或sinB=cosA
      (2)同角的三角函数值之间的关系:
      ①sin2A+cos2A=1
      ②tanA=sinA/cosA
      ③tanA=1/tanB
      ④a/sinA=b/sinB=c/sinC
      (3)锐角三角函数随角度的变化规律:
      锐角∠A的tan值和sin值随着角度的增大而增大,cos值随着角度的增大而减小。

    • 解直角三角形的应用:
      一般步骤是:
      (1)将实际问题抽象为数学问题(画图,转化为直角三角形的问题);
      (2)根据题目的条件,适当选择锐角三角函数等去解三角形;
      (3)得到数学问题的答案;
      (4)还原为实际问题的答案。

    • 解直角三角形的函数值列举:
      sin1=0.01745240643728351 sin2=0.03489949670250097 sin3=0.05233595624294383
      sin4=0.0697564737441253 sin5=0.08715574274765816 sin6=0.10452846326765346
      sin7=0.12186934340514747 sin8=0.13917310096006544 sin9=0.15643446504023087
      sin10=0.17364817766693033 sin11=0.1908089953765448 sin12=0.20791169081775931
      sin13=0.22495105434386497 sin14=0.24192189559966773 sin15=0.25881904510252074
      sin16=0.27563735581699916 sin17=0.2923717047227367 sin18=0.3090169943749474
      sin19=0.3255681544571567 sin20=0.3420201433256687 sin21=0.35836794954530027
      sin22=0.374606593415912 sin23=0.3907311284892737 sin24=0.40673664307580015
      sin25=0.42261826174069944 sin26=0.4383711467890774 sin27=0.45399049973954675
      sin28=0.4694715627858908 sin29=0.48480962024633706 sin30=0.49999999999999994
      sin31=0.5150380749100542 sin32=0.5299192642332049 sin33=0.544639035015027
      sin34=0.5591929034707468 sin35=0.573576436351046 sin36=0.5877852522924731
      sin37=0.6018150231520483 sin38=0.6156614753256583 sin39=0.6293203910498375
      sin40=0.6427876096865392 sin41=0.6560590289905073 sin42=0.6691306063588582
      sin43=0.6819983600624985 sin44=0.6946583704589972 sin45=0.7071067811865475
      sin46=0.7193398003386511 sin47=0.7313537016191705 sin48=0.7431448254773941

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐