如图,直线l1分别交x轴、y轴于A、B两点,且AO=8,BO=8,与直线y=x交于点C,平行于y轴的直线l2从原点O出发,以每秒1个单位长度的速度沿x轴向右平移,到C点时停止;l2分别交线-九年级数学


(2)理清题意是采用分段函数解决问题的关键。

生活中的应用:

1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 考点名称:梯形,梯形的中位线

    • 梯形的定义:
      一组对边平行,另一组对边不平行的四边形叫做梯形。
      梯形中平行的两边叫做梯形的底,通常把较短的底叫做上底,较长的底叫做下底,梯形中不平行的两边叫做梯形的腰,梯形的两底的距离叫做梯形的高。
      梯形的中位线:
      连结梯形两腰的中点的线段。 

    • 梯形性质:
      ①梯形的上下两底平行;
      ②梯形的中位线(两腰中点相连的线叫做中位线)平行于两底并且等于上下底和的一半。
      ③等腰梯形对角线相等。

      梯形判定:
      1.一组对边平行,另一组对边不平行的四边形是梯形。
      2.一组对边平行且不相等的四边形是梯形。

      梯形中位线定理:
      梯形中位线平行于两底,并且等于两底和的一半。
      梯形中位线×高=(上底+下底)×高=梯形面积
      梯形中位线到上下底的距离相等
      中位线长度=(上底+下底)

      梯形的周长与面积
      梯形的周长公式:上底+下底+腰+腰,用字母表示:a+b+c+d。
      等腰梯形的周长公式:上底+下底+2腰,用字母表示:a+b+2c。
      梯形的面积公式:(上底+下底)×高÷2,用字母表示:S=(a+b)×h。
      变形1:h=2s÷(a+b);
      变形2:a=2s÷h-b;
      变形3:b=2s÷h-a。
      另一计算梯形的面积公式: 中位线×高,用字母表示:L·h。
      对角线互相垂直的梯形面积为:对角线×对角线÷2。

    • 梯形的分类


      等腰梯形:两腰相等的梯形。
      直角梯形:有一个角是直角的梯形。

      等腰梯形的性质:
      (1)等腰梯形的同一底边上的两个角相等。
      (2)等腰梯形的对角线相等。
      (3)等腰梯形是轴对称图形。

      等腰梯形的判定:
      (1)定义:两腰相等的梯形是等腰梯形
      (2)定理:在同一底上的两个角相等的梯形是等腰梯形
      (3)对角线相等的梯形是等腰梯形。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐