如图,直线分别与x轴、y轴交于A、B两点;直线与AB交于点C,与过点A且平行于y轴的直线交于点D,点E从点A出发,以每秒1个单位的速度沿x轴向左运动,过点E作x轴的垂线,分别交直-九年级数学

题文

如图,直线分别与x轴、y轴交于A、B两点;直线与AB交于点C,与过点A且平行于y轴的直线交于点D,点E从点A出发,以每秒1个单位的速度沿x轴向左运动,过点E作x轴的垂线,分别交直线AB、OD于P、Q两点,以PQ为边向右作正方形PQMN,设正方形PQMN与△ACD重叠部分(阴影部分)的面积为S(平方单位),点E的运动时间为t(秒)。
(1)求点C的坐标;
(2)当0<t<5时,求S与t之间的函数关系式;
(3)求(2)中S的最大值;
(4)当t>0时,直接写出点在正方形PQMN内部时t的取值范围。
(参考公式:二次函数y=ax2+bx+c图象的顶点坐标为

题型:解答题  难度:偏难

答案

解:(1)解方程组
得:
所以点C的坐标为
(2)直线与x轴交于A点,
所以x=8,
所以A点的坐标为(8,0),
因为AE=t,
所以OE=8-t,
所以在直线上,
当x=8-t时,,所以在直线上,
当x=8-t时,
所以
所以
所以当0<t<5时,S与t之间的函数关系式为S=(10-2t)t,
即S=-2t2+10t;
(3)二次函数y=ax2+bx+c图象的顶点坐标
时,
所以S的最大值是
(4)点在正方形PQMN内部时t的取值范围是

据专家权威分析,试题“如图,直线分别与x轴、y轴交于A、B两点;直线与AB交于点C,与过点..”主要考查你对  求二次函数的解析式及二次函数的应用,一次函数的图像,二次函数的图像,二次函数的最大值和最小值,正方形,正方形的性质,正方形的判定  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用一次函数的图像二次函数的图像二次函数的最大值和最小值正方形,正方形的性质,正方形的判定

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐