如图,直线分别与x轴、y轴交于A、B两点;直线与AB交于点C,与过点A且平行于y轴的直线交于点D,点E从点A出发,以每秒1个单位的速度沿x轴向左运动,过点E作x轴的垂线,分别交直-九年级数学


当 k>0,b<0,这时此函数的图象经过第一、三、四象限;
当 k<0,b>0,这时此函数的图象经过第一、二、四象限;
当 k<0,b<0,这时此函数的图象经过第二、三、四象限。
当b>0时,直线必通过第一、二象限;
当b<0时,直线必通过第三、四象限。
特别地,当b=0时,直线经过原点O(0,0)。
这时,当k>0时,直线只通过第一、三象限,不会通过第二、四象限。
当k<0时,直线只通过第二、四象限,不会通过第一、三象限。

  • 特殊位置关系:
    当平面直角坐标系中两直线平行时,其函数解析式中k的值(即一次项系数)相等;
    当平面直角坐标系中两直线垂直时,其函数解析式中k的值互为负倒数(即两个k值的乘积为-1)一次函数的

  • 画法
    (1)列表:表中给出一些自变量的值及其对应的函数值。
    (2)描点:在直角坐标系中,以自变量的值为横坐标,相应的函数值为纵坐标,描出表格中数值对应的各点。
    一般地,y=kx+b(k≠0)的图象过(0,b)和(-b/k,0)两点即可画出。
    正比例函数y=kx(k≠0)的图象是过坐标原点的一条直线,一般取(0,0)和(1,k)两点画出即可。
    (3)连线: 按照横坐标由小到大的顺序把描出的各点用直线连接起来。

  • 考点名称:二次函数的图像

    • 二次函数的图像
      是一条关于对称的曲线,这条曲线叫抛物线。
      抛物线的主要特征:
      ①有开口方向,a表示开口方向:a>0时,抛物线开口向上;a<0时,抛物线开口向下;
      ②有对称轴;
      ③有顶点;
      ④c 表示抛物线与y轴的交点坐标:(0,c)。

    • 二次函数图像性质:
      轴对称:

      二次函数图像是轴对称图形。对称轴为直线x=-b/2a
      对称轴与二次函数图像唯一的交点为二次函数图像的顶点P。
      特别地,当b=0时,二次函数图像的对称轴是y轴(即直线x=0)。
      a,b同号,对称轴在y轴左侧
      b=0,对称轴是y轴
      a,b异号,对称轴在y轴右侧

      顶点:
      二次函数图像有一个顶点P,坐标为P ( h,k )
      当h=0时,P在y轴上;当k=0时,P在x轴上。即可表示为顶点式y=a(x-h)^2+k。
      h=-b/2a, k=(4ac-b^2)/4a。

      开口:
      二次项系数a决定二次函数图像的开口方向和大小。
      当a>0时,二次函数图像向上开口;当a<0时,抛物线向下开口。
      |a|越大,则二次函数图像的开口越小。

    • 决定对称轴位置的因素:
      一次项系数b和二次项系数a共同决定对称轴的位置。
      当a>0,与b同号时(即ab>0),对称轴在y轴左; 因为对称轴在左边则对称轴小于0,也就是- b/2a<0,所以 b/2a要大于0,所以a、b要同号
      当a>0,与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
      可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab<0 ),对称轴在y轴右。
      事实上,b有其自身的几何意义:二次函数图像与y轴的交点处的该二次函数图像切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。

      决定与y轴交点的因素:

      常数项c决定二次函数图像与y轴交点。
      二次函数图像与y轴交于(0,C)
      注意:顶点坐标为(h,k), 与y轴交于(0,C)。

      与x轴交点个数:
      a<0;k>0或a>0;k<0时,二次函数图像与x轴有2个交点。
      k=0时,二次函数图像与x轴只有1个交点。
      a<0;k<0或a>0,k>0时,二次函数图像与X轴无交点。
      当a>0时,函数在x=h处取得最小值ymin=k,在x<h范围内是减函数,在x>h范围内是增函数(即y随x的变大而变小),二次函数图像的开口向上,函数的值域是y>k
      当a<0时,函数在x=h处取得最大值ymax=k,在x<h范围内是增函数,在x>h范围内是减函数(即y随x的变大而变大),二次函数图像的开口向下,函数的值域是y<k
      当h=0时,抛物线的对称轴是y轴,这时,函数是偶函数。

    考点名称:二次函数的最大值和最小值

    • 二次函数的最值:
      1.如果自变量的取值范围是全体实数,则当a>0时,抛物线开口向上,有最低点,那么函数在处取得最小值y最小值=
      当a<0时,抛物线开口向下,有最高点,即当时,函数取得最大值,y最大值=
      也即是:如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当时,
      2.如果自变量的取值范围是,那么,首先要看是否在自变量取值范围内,若在此范围内,则当x=时,;若不在此范围内,则需要考虑函数在范围内的增减性,如果在此范围内,y随x的增大而增大,则当x=x2 时,,当x=x1;如果在此范围内,y随x的增大而减小,则当x=x1时,,当x=x2 。

    考点名称:正方形,正方形的性质,正方形的判定

    • 正方形的定义:
      有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。
      特殊的长方形。
      四条边都相等且四个角都是直角的四边形叫做正方形。
      有一组邻边相等的矩形是正方形。
      有一个角为直角的菱形是正方形。
      对角线平分且相等,并且对角线互相垂直的四边形为正方形。
      对角线相等的菱形是正方形。

    • 正方形的性质:

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐