已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直-九年级数学

题文

已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直线AB为抛物线的伴随直线。
(1)如图1,求抛物线y=(x-2)2+1的伴随直线的解析式;
(2)如图2,若抛物线y=a(x-m)2+n(m>0)的伴随直线是y=x-3,伴随四边形的面积为12,求此抛物线的解析式;
(3)如图3,若抛物线y=a(x-m)2+n的伴随直线是y=-2x+b(b>0),且伴随四边形ABCD是矩形。
①用含b的代数式表示m、n的值;
②在抛物线的对称轴上是否存在点P,使得△PBD是一个等腰三角形?若存在,请直接写出点P的坐标(用含b的代数式表示),若不存在,请说明理由。
题型:解答题  难度:偏难

答案

解:(1)由已知得B(2,1),A(0,5),
设所求直线的解析式为y=kx+b,则,解得
∴所求直线的解析式为y=-2x+5;
(2)如图1,作BE⊥AC于点E,由题意得四边形ABCD是平行四边形,点A的坐标为(0,-3),点C的坐标为(0,3),可得AC=6,
∵□ABCD的面积为12,
∴S△ABC=6,即S△ABC=AC·BE=6,
∴BE=2,
∵m>0,即顶点B在y轴的右侧,且在直线y=x-3上,
∴顶点B的坐标为B(2,-1)又抛物线经过点A(0,-3),
∴a=-
∴y=-(x-2)2-1;
(3)①如图2,作BE⊥x轴于点E,
由已知得:A的坐标为(0,b),C的坐标为(0,-b),
∵顶点B(m,n)在直线y=-2x+b上,
∴n=-2m+b,即点B的坐标为(m,-2m+b),
在矩形ABCD中,OC=OB,OC2=OB2
即b2=m2+(-2m+b)2
∴5m2-4mb=0,
∴m(5m-4b)=0,
∴m1=0(不合题意,舍去),m2=b,
∴n=-2m+b=-2×b+b=-b;
②存在,共四个点如下:
P1b,b),P2b,b),P3b,b),P4b,-b)。



图2

据专家权威分析,试题“已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于..”主要考查你对  求二次函数的解析式及二次函数的应用,求一次函数的解析式及一次函数的应用,等腰三角形的性质,等腰三角形的判定,平行四边形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用求一次函数的解析式及一次函数的应用等腰三角形的性质,等腰三角形的判定平行四边形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐