已知抛物线y=a(x-m)2+n与y轴交于点A,它的顶点为点B,点A、B关于原点O的对称点分别为C、D,若A、B、C、D中任何三点都不在一直线上,则称四边形ABCD为抛物线的伴随四边形,直-九年级数学


一、分段函数问题
分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
合实际。

二、函数的多变量问题
解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
求可以反映实际问题的函数

三、概括整合
(1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
(2)理清题意是采用分段函数解决问题的关键。

生活中的应用:

1.当时间t一定,距离s是速度v的一次函数。s=vt。
2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 考点名称:等腰三角形的性质,等腰三角形的判定

    • 定义:
      有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

    • 等腰三角形的性质:
      1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
      2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
      3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
      4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
      5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
      6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
      7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
      8.等腰三角形中腰的平方等于高的平方加底的一半的平方
      9.等腰三角形中腰大于高
      10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)

    • 等腰三角形的判定:
      1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
      2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
      3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。

    考点名称:平行四边形的性质

    • 平行四边形的概念:
      两组对边分别平行的四边形叫做平行四边形。
      平行四边形用符号“□ABCD,如平行四边形ABCD记作“□ABCD”,读作ABCD”。
      ①平行四边形属于平面图形。
      ②平行四边形属于四边形。
      ③平行四边形中还包括特殊的平行四边形:矩形,正方形和菱形等。
      ④平行四边形属于中心对称图形。

    • 平行四边形的性质:
      主要性质
      (矩形、菱形、正方形都是特殊的平行四边形。)
      (1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
      (简述为“平行四边形的两组对边分别相等”)
      (2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
      (简述为“平行四边形的两组对角分别相等”)
      (3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
      (简述为“平行四边形的邻角互补”)
      (4)夹在两条平行线间的平行线段相等。
      (5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
      (简述为“平行四边形的对角线互相平分”)
      (6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
      (7)平行四边形的面积等于底和高的积。(可视为矩形)
      (8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
      (9)平行四边形是中心对称图形,对称中心是两对角线的交点.
      (10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。
      注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。

      (11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
      (12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
      (13)平行四边形对角线把平行四边形面积分成四等分。
      (14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
      (15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。

    • 最新内容
    • 相关内容
    • 网友推荐
    • 图文推荐