已知:如图,把矩形OCBA放置于直角坐标系中,OC=3,BC=2,取AB的中点M,连结MC,把△MBC沿x轴的负方向平移OC的长度后得到△DAO。(1)试直接写出点D的坐标;(2)已知点B与点D在经过-九年级数学

题文

已知:如图,把矩形OCBA放置于直角坐标系中,OC=3,BC=2,取AB的中点M,连结MC,把△MBC沿x轴的负方向平移OC的长度后得到△DAO。

(1)试直接写出点D的坐标;
(2)已知点B与点D在经过原点的抛物线上,点P在第一象限内的该抛物线上移动,过点P作PQ⊥x轴于点Q,连结OP。
①若以O、P、Q为顶点的三角形与△DAO相似,试求出点P的坐标;
②试问在抛物线的对称轴上是否存在一点T,使得|TO-TB|的值最大。
题型:解答题  难度:偏难

答案

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐
解:(1)依题意得:
(2)①∵

∵抛物线经过原点
∴设抛物线的解析式为
又抛物线经过点与点

解得:
∴抛物线的解析式为
∵点P在抛物线上
∴设点
(i)若,则

解得:(舍去)或
∴点
(ii)若,则

解得:(舍去)或
∴点
②存在点T,使得的值最大
抛物线的对称轴为直线
设抛物线与x轴的另一个交点为E,则点
∵点O、点E关于直线对称

要使得的值最大,即是使得的值最大,
根据三角形两边之差小于第三边可知,当T、E、B三点在同一直线上时
的值最大
设过B、E两点的直线解析式为

解得:
∴直线BE的解析式为
时,
∴存在一点使得最大。
如图,抛物线y=x2+bx+c与x轴交于A(-1,0)、B(3,0)两点。(1)求该抛物线的解析式;(2)设(1)中的抛物线上有一个动点P,当点P在该抛物线上滑动到什么位置时,满足S△PAB=8,并求-九年级数学
如图,抛物线y=x2+bx+c与x轴
已知抛物线与x轴交于A(-1,0)和B(3,0)两点,且与y轴交于点C(0,3)。(1)求抛物线的解析式;(2)抛物线的对称轴方程和顶点M坐标;(3)求四边形ABMC的面积。-九年级数学
已知抛物线与x轴交于A(-1,
已知二次函数y=ax2+bx+c的图象经过(﹣1,﹣),B(0,﹣4),C(4,0)三点,则二次函数的解析式是(),顶点D的坐标是(),对称轴方程是().-九年级数学
已知二次函数y=ax2+bx+c的图
已知:在矩形AOBC中,OB=4,OA=3,分别以OB,OA所在直线为x轴和y轴,建立如图所示的平面直角坐标系,F是边BC上的一个动点(不与B,C重合),过F点的反比例函数(k>0)的图象与AC边-九年级数学
已知:在矩形AOBC中,OB=4,
已知抛物线y=ax2+bx+c与x轴的两个交点的横坐标是方程x2+x-2=0的两个根,且抛物线过点(2,8),求二次函数的解析式。-九年级数学
已知抛物线y=ax2+bx+c与x轴的
上一篇:如图所示,已知抛物线的图象与y轴相交于点B(0,1),点C(m,n)在该抛物线图象上,且以BC为直径的⊙M恰好经过顶点A。(1)求k的值;(2)求点C的坐标;(3)若点P的纵坐标为t,且点P在-九年级数学     下一篇:已知:抛物线与x轴有两个不同的交点。(1)求k的取值范围;(2)当k为整数,且关于x的方程3x=kx-1的解是负数时,求抛物线的解析式;(3)在(2)的条件下,若在抛物线和x轴所围成的封-九年级数学
零零教育社区:论坛热帖子