如图所示,已知抛物线的图象与y轴相交于点B(0,1),点C(m,n)在该抛物线图象上,且以BC为直径的⊙M恰好经过顶点A。(1)求k的值;(2)求点C的坐标;(3)若点P的纵坐标为t,且点P在-九年级数学

题文

如图所示,已知抛物线的图象与y轴相交于点B(0,1),点C(m,n)在该抛物线图象上,且以BC为直径的⊙M恰好经过顶点A。
(1)求k的值;
(2)求点C的坐标;
(3)若点P的纵坐标为t,且点P在该抛物线的对称轴l上运动,试探索:
①当S1<S<S2时,求t的取值范围(其中:S为△PAB的面积,S1为△OAB的面积,S2为四边形OACB的面积);
②当t取何值时,点P在⊙M上。(写出t的值即可)

题型:解答题  难度:偏难

答案

解:(1)∵点B(0,1)在的图象上,

∴k=1;
(2)由(1)知抛物线为:
∴顶点A为(2,0),
∴OA=2,OB=1,
过C(m,n)作CD⊥x轴于D,则CD=n,OD=m,
∴AD=m-2,
由已知得∠BAC=90°,
∴∠CAD+∠BAO=90°,
又∠BAO+∠OBA=90°,
∴∠OBA=∠CAD,
∴Rt△OAB∽Rt△DCA,
,即(或tan∠OBA= tan∠CAD,,即),
∴n=2(m-2);
又点C(m,n)在上,



∴m=2或m=10;
当m=2时,n=0,
当m=10时,n=16;
∴符合条件的点C的坐标为(2,0)或(10,16);
(3)①依题意得,点C(2,0)不符合条件,
∴点C为(10,16),
此时

又点P在函数图象的对称轴x=2上,
∴P(2,t),AP=|t|
=|t|,

∴当t≥0时,S=t,
∴1<t<21,
∴当t<0时,S=-t,
∴-21<t<-1,
∴t的取值范围是:1<t<21或-21<t<-1,
②t=0,1,17。

据专家权威分析,试题“如图所示,已知抛物线的图象与y轴相交于点B(0,1),点C(m,n)在该..”主要考查你对  求二次函数的解析式及二次函数的应用,圆心角,圆周角,弧和弦,点与圆的位置关系,相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用圆心角,圆周角,弧和弦点与圆的位置关系相似三角形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐