如图所示,直线y=-x+3与x轴、y轴分别相交于点B、点C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2。(1)求A点的坐标;(2)求该抛物线的函-九年级数学

题文

如图所示,直线y=-x+3与x轴、y轴分别相交于点B、点C,经过B、C两点的抛物线y=ax2+bx+c与x轴的另一交点为A,顶点为P,且对称轴是直线x=2。
(1)求A点的坐标;
(2)求该抛物线的函数表达式;
(3)连接AC,请问在x轴上是否存在点Q,使得以点P、B、Q 为顶点的三角形与△ABC相似,若存在,请求出点Q的坐标;若不存在,请说明理由。

题型:解答题  难度:偏难

答案

解:(1)∵直线y=-x+3与x轴相交于点B,
∴当y=0时,x=3,
∴点B的坐标为(3,0),
又∵抛物线过x轴上的A、B两点,且对称轴为x=2,
根据抛物线的对称性,
∴点A的坐标为(1,0);
(2)∵y=-x+3过点C,易知C(0,3),
∴c=3,
又∵抛物线y=ax2+bx+c过点A(1,0),B(3,0),
解得
∴y=x2-4x+3;
(3)连接PB,由y=x2-4x+3= (x-2)2-1,得P(2,-1),
设抛物线的时称轴交x轴于点M,
在Rt△PBM中,PM=MB=1,
∴∠PBM=45°,PB=
由点B(3,0),C(0,3)易得OB=OC=3,
在等腰直角三角形OBC中,∠ABC=45°,
由勾股定理,得BC=3
假设在x轴上存在点Q,使得以点P、B、Q为顶点的三角形与△ABC相似,
①当,∠PBQ=∠ABC=45°时,△PBQ∽△ABC,

∴BQ=3,
又∵BO=3,
∴点Q与点O重合,
∴Q1的坐标是(0,0),
②当,∠QBP=∠ABC=45°时,△QBP∽△ABC,

∴QB=
∵OB=3,
∴OQ=OB-QB=3-
∴Q2的坐标是
∵∠PBx=180°-45°=135°,∠BAC<135°,
∴∠PBx≠∠BAC,
∴点Q不可能在B点右侧的x轴上,
综上所述,在x轴上存在两点Q1(0,0)、Q2,能使得以点P、B、Q为顶点的三角形与△ABC相似。

据专家权威分析,试题“如图所示,直线y=-x+3与x轴、y轴分别相交于点B、点C,经过B、C两..”主要考查你对  求二次函数的解析式及二次函数的应用,二次函数的图像,相似三角形的判定  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用二次函数的图像相似三角形的判定

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

    由一般式变为交点式的步骤:
    二次函数
    ∵x1+x2=-b/a, x1?x

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐