如图甲,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经过点C。(1)求抛物线的解析式;(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边-九年级数学
题文
如图甲,在平面直角坐标系中,Rt△AOB≌ Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经 过点C。 (1)求抛物线的解析式; (2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q的坐标,若不存在,请说明理由; (3)如图乙,E为BC延长线上一动点,过A、B、E三点作⊙O′,连接AE,在⊙O′上另有一点F,且AF=AE,AF交BC于点G,连接BF,下列结论:①BE+BF的值不变;②,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论。 |
甲 乙 |
答案
解:(1)由Rt△AOB≌Rt△CDA得OD=2+1=3,CD=1, ∴C点坐标为(-3,1), ∵抛物线经过点C, ∴1=(-3)2a+(-3)a-2, ∴a=, ∴抛物线的解析式为; |
|
(2)在抛物线(对称轴的右侧)上存在点P,Q,使四边形ABPQ是正方形, 如图甲,以AB为边在AB的右侧作正方形ABPQ,过P作PE⊥OB于E,QG⊥x轴于G,可证△PBE≌△AQG≌△BAO, ∴PE=AG=BO=2,BE=QG=AO=1, ∴P点坐标为(2,1),Q点坐标为(1,-1), 由(1)抛物线得, 当x=2时,y=1; 当x=1时y=-1, ∴P,Q在抛物线上, 故在抛物线(对称轴的右侧)上存在点P(2,1),Q(1,-1),使四边形ABPQ是正方形; |
甲 |
(3)结论②成立, 证明如下: 如图乙连EF,过F作FM∥BC交AB的延长线于M,则△AMF∽△ABG, ∴ 由(1)知△ABC是等腰三角形, ∴∠1=∠2=45°, ∵AF=AE, ∴∠AEF=∠1=45°, ∴∠FAF=90°, EF是⊙O′的直径, ∴∠EBF=90°, ∵ FM//BG, ∴∠MFB=∠EBF=90°,∠M=∠2=45°, ∴BF=MF, ∴。 |
乙 |
据专家权威分析,试题“如图甲,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,..”主要考查你对 求二次函数的解析式及二次函数的应用,全等三角形的性质,正方形,正方形的性质,正方形的判定,圆心角,圆周角,弧和弦,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用全等三角形的性质正方形,正方形的性质,正方形的判定圆心角,圆周角,弧和弦相似三角形的性质
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。③交点式:
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。
由一般式变为交点式的步骤:
二次函数
∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
∴y=ax2+bx+c
=a(x2+b/ax+c/a)
=a[x2-(x1+x2)x+x1
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |