如图甲,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经过点C。(1)求抛物线的解析式;(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边-九年级数学

题文

如图甲,在平面直角坐标系中,Rt△AOB≌ Rt△CDA,且A(-1,0)、B(0,2),抛物线y=ax2+ax-2经 过点C。
(1)求抛物线的解析式;
(2)在抛物线(对称轴的右侧)上是否存在两点P、Q,使四边形ABPQ是正方形?若存在,求点P、Q的坐标,若不存在,请说明理由;
(3)如图乙,E为BC延长线上一动点,过A、B、E三点作⊙O′,连接AE,在⊙O′上另有一点F,且AF=AE,AF交BC于点G,连接BF,下列结论:①BE+BF的值不变;②,其中有且只有一个成立,请你判断哪一个结论成立,并证明成立的结论。

甲                                                       乙
题型:解答题  难度:偏难

答案

解:(1)由Rt△AOB≌Rt△CDA得OD=2+1=3,CD=1,
∴C点坐标为(-3,1),
∵抛物线经过点C,
∴1=(-3)2a+(-3)a-2,
∴a=
∴抛物线的解析式为
(2)在抛物线(对称轴的右侧)上存在点P,Q,使四边形ABPQ是正方形,
如图甲,以AB为边在AB的右侧作正方形ABPQ,过P作PE⊥OB于E,QG⊥x轴于G,可证△PBE≌△AQG≌△BAO,
∴PE=AG=BO=2,BE=QG=AO=1,
∴P点坐标为(2,1),Q点坐标为(1,-1),
由(1)抛物线得,
当x=2时,y=1;
当x=1时y=-1,
∴P,Q在抛物线上,
故在抛物线(对称轴的右侧)上存在点P(2,1),Q(1,-1),使四边形ABPQ是正方形;

(3)结论②成立,
证明如下:
如图乙连EF,过F作FM∥BC交AB的延长线于M,则△AMF∽△ABG,

由(1)知△ABC是等腰三角形,
∴∠1=∠2=45°,
∵AF=AE,
∴∠AEF=∠1=45°,
∴∠FAF=90°,
EF是⊙O′的直径,
∴∠EBF=90°,
∵ FM//BG,
∴∠MFB=∠EBF=90°,∠M=∠2=45°,
∴BF=MF,

      乙

据专家权威分析,试题“如图甲,在平面直角坐标系中,Rt△AOB≌Rt△CDA,且A(-1,0)、B(0,..”主要考查你对  求二次函数的解析式及二次函数的应用,全等三角形的性质,正方形,正方形的性质,正方形的判定,圆心角,圆周角,弧和弦,相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用全等三角形的性质正方形,正方形的性质,正方形的判定圆心角,圆周角,弧和弦相似三角形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

    由一般式变为交点式的步骤:
    二次函数
    ∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
    ∴y=ax2+bx+c
    =a(x2+b/ax+c/a)
    =a[x2-(x1+x2)x+x1

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐