已知抛物线y=ax2-2ax+b与x轴交于点A(3,0),与y轴交于点B。(1)求抛物线的解析式;(2)如图①,P为抛物线上的点,且在第二象限,若△POA的面积等于△POB的面积的2倍,求点P的坐标-九年级数学
题文
已知抛物线y=ax2-2ax+b与x轴交于点A(3,0),与y轴交于点B。 (1)求抛物线的解析式; (2)如图①,P为抛物线上的点,且在第二象限,若△POA的面积等于△POB的面积的2倍,求点P的坐标; (3)如图②,C为抛物线的顶点,在y轴上是否存在点D使△DAC为直角三角形,若存在,求出所有符合条件的D点的坐标;若不存在,请说明理由。 |
答案
解:(1)把A(3,0),B 代入, ∴3a= ∴; (2)设P, 则S△POB=, ∵S△POA=3·, ∴ ∴a=±, 又P在第二象限, ∴P; (3)C(1,-3), 设DO为a,则AD2=a2+9,DC2=1+(3-a)2,AC2=13, ∴当AD2+DC2=AC2时,即∠ADC=90°时, a2+9+1+9+a2-6a=13, 2a2-6a+6=0, a2-3a+3=0, 则a=1,b=-3,c=3, ∴A=9-12=-3<0, ∴无解, 当AD2+AC2=DC2时,即∠CAD=90°, a2+9+13=1+9+a2-6a, 当AC2+DC2=AD2时即∠ACD=90°, 则13+1+9+a2-6a=a2+9, , ∴ 则D或(0,2)。 |
据专家权威分析,试题“已知抛物线y=ax2-2ax+b与x轴交于点A(3,0),与y轴交于点B。(1)求..”主要考查你对 求二次函数的解析式及二次函数的应用,直角三角形的性质及判定 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用直角三角形的性质及判定
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。②顶点式:
y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
有时题目会指出让你用配方法把一般式化成顶点式。
例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
具体可分为下面几种情况:
当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。③交点式:
y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。
由一般式变为交点式的步骤:
二次函数
∵x
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |