如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D。(1)求点A的坐标(用m表示);-九年级数学
题文
如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D。 (1)求点A的坐标(用m表示); (2)求抛物线的解析式; (3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值。 |
答案
解;(1)由B(3,m)可知,,又△ABC为等腰直角三角形, ∴,,所以点A的坐标是(3-m,0); (2)∵ ∴,则点D的坐标是(0,m-3), 又抛物线顶点为P(1,0),且过点B、D,所以可设抛物线的解析式为:,得:,解得 ∴抛物线的解析式为; (3)过点Q作于点M,过点Q作于点N,设点Q的坐标是, 则, ∵ ∴ ∴ 即,得 ∵ ∴ ∴ 即, 得 又∵ ∴ 即为定值8。 |
据专家权威分析,试题“如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,..”主要考查你对 求二次函数的解析式及二次函数的应用,等腰三角形的性质,等腰三角形的判定,相似三角形的性质 等考点的理解。关于这些考点的“档案”如下:
求二次函数的解析式及二次函数的应用等腰三角形的性质,等腰三角形的判定相似三角形的性质
考点名称:求二次函数的解析式及二次函数的应用
- 求二次函数的解析式:
最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
(1)已知抛物线上三点的坐标,一般选用一般式;
(2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
(3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
(4)已知抛物线上纵坐标相同的两点,常选用顶点式。
二次函数的应用:
(1)应用二次函数才解决实际问题的一般思路:
理解题意;
建立数学模型;
解决题目提出的问题。
(2)应用二次函数求实际问题中的最值:
即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
求最值时,要注意求得答案要符合实际问题。 二次函数的三种表达形式:
①一般式:
y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
上一篇:在平面直角坐标系中,已知A(-4,0),B(1,0),且以AB为直径的圆交y轴的正半轴于点C(0,2),过点C作圆的切线交x轴于点D。(1)求过A,B,C三点的抛物线的解析式;(2)求点D的坐标-九年级数学
下一篇:如图,在平面直角坐标系中,点A、C的坐标分别为(-1,0)、(0,-),点B在x轴上,已知某二次函数的图象经过A、B、C三点,且它的对称轴为直线x=1,点P为直线BC下方的二次函数图象-九年级数学
零零教育社区:论坛热帖子
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |