如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D。(1)求点A的坐标(用m表示);-九年级数学

题文

如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,点B坐标为(3,m)(m>0),线段AB与y轴相交于点D,以P(1,0)为顶点的抛物线过点B、D。
(1)求点A的坐标(用m表示);
(2)求抛物线的解析式;
(3)设点Q为抛物线上点P至点B之间的一动点,连接PQ并延长交BC于点E,连接BQ并延长交AC于点F,试证明:FC(AC+EC)为定值。

题型:解答题  难度:偏难

答案

解;(1)由B(3,m)可知,又△ABC为等腰直角三角形,
,所以点A的坐标是(3-m,0);
(2)∵
,则点D的坐标是(0,m-3),
又抛物线顶点为P(1,0),且过点B、D,所以可设抛物线的解析式为:,得:,解得
∴抛物线的解析式为
(3)过点Q作于点M,过点Q作于点N,设点Q的坐标是




,得





又∵

为定值8。

据专家权威分析,试题“如图,已知△ABC为直角三角形,∠ACB=90°,AC=BC,点A、C在x轴上,..”主要考查你对  求二次函数的解析式及二次函数的应用,等腰三角形的性质,等腰三角形的判定,相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用等腰三角形的性质,等腰三角形的判定相似三角形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐