已知:如图,抛物线y=ax2+bx+c的顶点坐标是(4,1),与y轴的交点为A(0,5)。(1)求抛物线的解析式;(2)若B(,0),C是(1)中抛物线上的点,CD⊥OB,垂足为D,△AOB∽△BDC,①求点C的坐-九年级数学

题文

已知:如图,抛物线y=ax2+bx+c的顶点坐标是(4,1),与y轴的交点为A(0,5)。

(1)求抛物线的解析式;
(2)若B(,0),C是(1)中抛物线上的点,CD⊥OB,垂足为D,△AOB∽△BDC,
①求点C的坐标;
②试判定以AC为直径的圆M与x轴有怎样的位置关系,并说明理由。
题型:解答题  难度:中档

答案

解:(1)设抛物线的解析式为y=a(x-4)2+1,
∵抛物线经过A(0,5),
∴5=a(0-4)2+1,
∴a=
∴抛物线的解析式为y=(x-4)2+1即y=x2-2x+5;
(2)①∵C在抛物线上,
∴设C(m,m2-2m+5),即CD=m2-2m+5OD=m,
∴BD=OD-OB=m-
∵△AOB∽△BDC,

解得m=5,∴C(5,);
②∵∠CBD=∠BAO,∠BAO+∠ABO=90°,
∴∠CBD+∠ABO=90°,
∴∠ABC=90°,即△ABC是Rt△,
连结MB,
∵M是AC的中点,
∴MB=AC,
∵OB=BD=
∴MB∥OA,
∴MB⊥x轴,即圆M与x轴相切。

据专家权威分析,试题“已知:如图,抛物线y=ax2+bx+c的顶点坐标是(4,1),与y轴的交点为..”主要考查你对  求二次函数的解析式及二次函数的应用,直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离),相似三角形的性质  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用直线与圆的位置关系(直线与圆的相交,直线与圆的相切,直线与圆的相离)相似三角形的性质

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

    由一般式变为交点式的步骤:
    二次函数
    ∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
    ∴y=ax2+bx+c
    =a(x2+b/ax+c/a)
    =a[x2-(x1+x2)x+x1?x2]
    =a(x-x1)(x-x2).
    重要概念:
    a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;
    a<0时,开口方向向下。a的绝对值可以决定开口大小。
    a的绝对值越大开口就越小,a的绝对值越小开口就越大。
    能灵活运用这三种方式求二次函数的解析式;
    能熟练地运用二次函数在几何领域中的应用;
    能熟练地运用二次函数解决实际问题。

  • 二次函数的其他表达形式:
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐