在平面直角坐标系内有两点A(-2,0),B(,0),CB所在直线为y=2x+b。(1)求b与C的坐标;(2)连接AC,求证:△AOC∽△COB;(3)求过A,B,C三点且对称轴平行于y轴的抛物线解析式;(4)在-九年级数学

)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
(x,y)为 + ,+(正,正)时该点在第一象限
(x,y)为 - ,+(负,正)时该点在第二象限
(x,y)为 - ,-(负,负)时该点在第三象限
(x,y)为 + ,-(正,负)时该点在第四象限
8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
10.
y=k(x-n)+b就是直线向右平移n个单位
y=k(x+n)+b就是直线向左平移n个单位
y=kx+b+n就是向上平移n个单位
y=kx+b-n就是向下平移n个单位
口决:左加右减相对于x,上加下减相对于b。
11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

考点名称:相似三角形的判定

  • 相似三角形:
    对应角相等,对应边成比例的两个三角形叫做相似三角形。
    互为相似形的三角形叫做相似三角形。

    例如图中,若B'C'//BC,那么角B=角B',角BAC=角B'A'C',是对顶角,那么我们就说△ABC∽△AB'C'

  • 相似三角形的判定:
    1.基本判定定理
    (1)平行于三角形一边的直线和其他两边相交,所构成的三角形与原三角形相似。
    (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似。(简叙为:两边对应成比例且夹角相等,两个三角形相似。)
    (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似。(简叙为:三边对应成比例,两个三角形相似。)
    (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),那么这两个三角形相似。
    2.直角三角形判定定理
    (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似。
    (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似。
    3.一定相似:
    (1).两个全等的三角形
    (全等三角形是特殊的相似三角形,相似比为1:1)
    (2).两个等腰三角形
    (两个等腰三角形,如果其中的任意一个顶角或底角相等,那么这两个等腰三角形相似。)
    (3).两个等边三角形
    (两个等边三角形,三个内角都是60度,且边边相等,所以相似) 
    (4).直角三角形中由斜边的高形成的三个三角形。

  • 相似三角形判定方法:
    证两个相似三角形应该把表示对应顶点的字母写在对应的位置上。如果是文字语言的“△ABC与△DEF相似”,那么就说明这两个三角形的对应顶点可能没有写在对应的位置上,而如果是符号语言的“△ABC∽△DEF”,那么就说明这两个三角形的对应顶点写在了对应的位置上。
    一、(预备定理)
    平行于三角形一边的直线截其它两边所在的直线,截得的三角形与原三角形相似。(这是相似三角形判定的定理,是以下判定方法证明的基础。这个引理的证明方法需要平行线与线段成比例的证明)
    二、如果一个三角形的两个角与另一个三角形的两个角对应相等,那么这两个三角形相似。
    三、如果两个三角形的两组对应边成比例,并且相应的夹角相等,那么这两个三角形相似。 
    四、如果两个三角形的三组对应边成比例,那么这两个三角形相似
    五(定义)
    对应角相等,对应边成比例的两个三角形叫做相似三角形
    六、两三角形三边对应垂直,则两三角形相似。
    七、两个直角三角形中,斜边与直角边对应成比例,那么两三角形相似。
    八、由角度比转化为线段比:h1/h2=Sabc

    易失误
    比值是一个具体的数字如:AB/EF=2
    而比不是一个具体的数字如:AB/EF=2:1

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐