已知:抛物线y=-x2-2(a-1)x-(a2-2a)与x轴交于点A(x1,0)、B(x2,0),且x1<1<x2。(1)求A、B两点的坐标(用a表示);(2)设抛物线的顶点为C,求△ABC的面积;(3)若a是整数,P为线段-九年级数学

题文

已知:抛物线y=-x2-2(a-1)x-(a2-2a)与x轴交于点A(x1,0)、B(x2,0),且x1<1<x2
(1)求A、B两点的坐标(用a表示);
(2)设抛物线的顶点为C,求△ABC的面积;
(3)若a是整数,P为线段AB上的一个动点(P点与A、B两点不重合),在x轴上方作等边△APM和等边△BPN,记线段MN的中点为Q,求抛物线的解析式及线段PQ的长的取值范围。
题型:解答题  难度:偏难

答案

解:(1)∵抛物线与x轴交于点A(x1,0)、B(x2,0),
∴x1、x2是关于x的方程-的解,
方程可简化为x2+2(a-1)x+(a2-2a)=0,
解方程,得x=-a或x=-a+2,
∵x1<x2,-a<-a+2,
∴x1=-a,x2=-a+2,
∴A、B两点的坐标分别为A(-a,0),B(-a+2,0);
(2)∵AB=2,顶点C的纵坐标为
∴△ABC的面积等于
(3)x1<1<x2
∴-a<1<-a+2,
∴-1<a<1,
∵a是整数,
∴a=0,所求抛物线的解析式为y=-
此时顶点C的坐标为,如图,作CD⊥AB于D,连结CQ,
则AD=1,
∴∠BAC=60°,
由抛物线的对称性可知△ABC是等边三角形,
由△APM和△BPN是等边三角形,线段MN的中点为Q可得,点 M、N分别在AC和BC边上,四边形PMCN为平行四边形,C、Q、 P三点共线,且
∵点P在线段AB上运动的过程中,P与A、B两点不重合,

据专家权威分析,试题“已知:抛物线y=-x2-2(a-1)x-(a2-2a)与x轴交于点A(x1,0)、B(x2,0..”主要考查你对  求二次函数的解析式及二次函数的应用,二次函数的图像  等考点的理解。关于这些考点的“档案”如下:

求二次函数的解析式及二次函数的应用二次函数的图像

考点名称:求二次函数的解析式及二次函数的应用

  • 求二次函数的解析式:
    最常用的方法是待定系数法,根据题目的特点,选择恰当的形式,一般,有如下几种情况:
    (1)已知抛物线上三点的坐标,一般选用一般式;
    (2)已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;
    (3)已知抛物线与x轴的两个交点的横坐标,一般选用两点式;
    (4)已知抛物线上纵坐标相同的两点,常选用顶点式。

    二次函数的应用:
    (1)应用二次函数才解决实际问题的一般思路:
    理解题意;
    建立数学模型;
    解决题目提出的问题。
    (2)应用二次函数求实际问题中的最值:
    即解二次函数最值应用题,设法把关于最值的实际问题转化为二次函数的最值问题,然后按求二次函数最值的方法求解。
    求最值时,要注意求得答案要符合实际问题。

  • 二次函数的三种表达形式:
    ①一般式:
    y=ax2+bx+c(a≠0,a、b、c为常数),顶点坐标为 [,]
    把三个点代入函数解析式得出一个三元一次方程组,就能解出a、b、c的值。

    ②顶点式:
    y=a(x-h)2+k(a≠0,a、h、k为常数),顶点坐标为对称轴为直线x=h,顶点的位置特征和图像的开口方向与函数y=ax2的图像相同,当x=h时,y最值=k。
    有时题目会指出让你用配方法把一般式化成顶点式。
    例:已知二次函数y的顶点(1,2)和另一任意点(3,10),求y的解析式。
    解:设y=a(x-1)2+2,把(3,10)代入上式,解得y=2(x-1)2+2。
    注意:与点在平面直角坐标系中的平移不同,二次函数平移后的顶点式中,h>0时,h越大,图像的对称轴离y轴越远,且在x轴正方向上,不能因h前是负号就简单地认为是向左平移。
    具体可分为下面几种情况:
    当h>0时,y=a(x-h)2的图象可由抛物线y=ax2向右平行移动h个单位得到;
    当h<0时,y=a(x-h)2的图象可由抛物线y=ax2向左平行移动|h|个单位得到;
    当h>0,k>0时,将抛物线y=ax2向右平行移动h个单位,再向上移动k个单位,就可以得到y=a(x-h)2+k的图象;
    当h>0,k<0时,将抛物线y=ax2向右平行移动h个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象;
    当h<0,k>0时,将抛物线y=ax2向左平行移动|h|个单位,再向上移动k个单位可得到y=a(x-h)2+k的图象;
    当h<0,k<0时,将抛物线y=ax2向左平行移动|h|个单位,再向下移动|k|个单位可得到y=a(x-h)2+k的图象。

    ③交点式:
    y=a(x-x1)(x-x2) (a≠0) [仅限于与x轴即y=0有交点时的抛物线,即b2-4ac≥0] .
    已知抛物线与x轴即y=0有交点A(x1,0)和 B(x2,0),我们可设y=a(x-x1)(x-x2),然后把第三点代入x、y中便可求出a。

    由一般式变为交点式的步骤:
    二次函数
    ∵x1+x2=-b/a, x1?x2=c/a(由韦达定理得),
    ∴y=ax2+bx+c
    =a(x2+b/ax+c/a)
    =a[x2-(x1+x2)x+x1?x2]
    =a(x-x1)(x-x2).
    重要概念:
    a,b,c为常数,a≠0,且a决定函数的开口方向。a>0时,开口方向向上;
    a<0时,开口方向向下。a的绝对值可以决定开口大小。
    a的绝对值越大开口就越小,a的绝对值越小开口就越大。
    能灵活运用这三种方式求二次函数的解析式;
    能熟练地运用二次函数在几何领域中的应用;

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐