设A和B为抛物线y=-3x2-2x+k与x轴的两个相异交点,M为抛物线的顶点,若△ABM为Rt△,求k的值.-数学

题文

设A和B为抛物线y=-3x2-2x+k与x轴的两个相异交点,M为抛物线的顶点,若△ABM为Rt△,求k的值.
题型:解答题  难度:中档

答案

如图,因抛物线与x轴有两个相异的交点,
所以△=4-4k×(-3)>0,
解得,k>-
1
3
,依题意∠AMB=90°,AM=BM,过M作MN⊥x轴于N,则显然有MN=
1
2
AB,
又因MN=
4k×(-3)-4
4×(-3)
=k+
1
3

AB=

(x1-x2)2

=

(x1+x2)2-4x1x2

=

(-
2
3
)2-4(-
k
3
)

=
2
3

1+3k

所以k+
1
3
=
1
2
×
2
3

1+3k

解得k1=0,k2=-
1
3
(舍去).
故答案为:k=0.

据专家权威分析,试题“设A和B为抛物线y=-3x2-2x+k与x轴的两个相异交点,M为抛物线的顶点..”主要考查你对  二次函数与一元二次方程  等考点的理解。关于这些考点的“档案”如下:

二次函数与一元二次方程

考点名称:二次函数与一元二次方程

  • 二次函数与一元二次方程的关系:
    函数y=ax2+bx+c(a≠0),当y=0时,得到一元二次方程ax2+bx+c=0(a≠0)。
    那么一元二次方程的解就是二次函数图像与x轴焦点的横坐标,因此,二次函数图像与x轴的交点情况决定一元二次方程根的情况。
    1、从形式上看:
    二次函数:y=ax2+bx+c  (a≠0)
    一元二次方程:ax2+bx+c=0  (a≠0)
    2、从内容上看:
    二次函数表示的是一对(x,y)之间的关系,它有无数对解;一元二次方程表示的是未知数x的值,最多只有2个值
  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐