某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员-八年级数学

题文

某新建商场设有百货部、服装部和家电部三个经营部,共有190名 售货员,计划全商场日营业额(指每日卖出商品所收到的总金额)为60万元,由于营业性质不同,分配到三个部的售货员的人数也就不等。根据经验,各部门每1万元营业额所需售货员人数和每1万元营业额所得利润情况如下表。商场将计划日营业额分配给三个营业部,设分配给百货部、服装部和家电部的营业额分别为x(万元),y(万元)和z(万元)(x、y、z都是整数)
(1)请用含x的代数式分别表示y和z;
(2)若商场预计每日的利润为C(万元),且C满足19≤C≤19.7,问这个商场应怎样分配日营业额给三个营业部?各部应分别安排多少名售货员?
题型:解答题  难度:偏难

答案

(1)依题意列方程组:
    得: (3)
   得: (4)
(2)
  把(3)(4)式代入C:
                                          
      
   解此不等式得: 
   ∴x=8,9,10;y=23,21.5,2;z=29,29.5,30
    x、y、z都是整数 ∴x、y、z 的解分别为(8,23,29)或(10,20,30)
 答:这个商场分配日营业额方案为百货部8万元(40人),服装部23万元,售货员为92人,家电部为29万元,售货员为58人;或者是百货部营业额10万元,用人50,服装部20万元,80人,家部电30万元,60人。

据专家权威分析,试题“某新建商场设有百货部、服装部和家电部三个经营部,共有190名售货..”主要考查你对  三元(及三元以上)一次方程(组)的应用,求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

三元(及三元以上)一次方程(组)的应用求一次函数的解析式及一次函数的应用

考点名称:三元(及三元以上)一次方程(组)的应用

  • 三元一次方程组的应用:求待定系数的值,列方程组解应用题等。

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐