在平面直角坐标系中,已知x轴上两个点A(2m-6,0),B(4,0)分别在原点两侧,且A、B两点间的距离小于7个单位长度。(1)求m的取值范围;(2)C是AB的中点且为整点(横、纵坐标都为整-七年级数学

题文

在平面直角坐标系中,已知x轴上两个点A(2m-6,0),B(4,0)分别在原点两侧,且A、B两点间的距离小于7个单位长度。
(1)求m的取值范围;
(2)C是AB的中点且为整点(横、纵坐标都为整数的点叫做整点),若D为整点,当△BCD为等腰直角三角形时,求出点D的坐标。
题型:解答题  难度:中档

答案

解:(1)∵A(2m-6,0),B(4,0),
∴AB=|2m-6-4|=|2m-10|,
∵A、B两点间的距离小于7个单位长度,
∴|2m-10|<7,
∴-7<2m-10<7,
<m<
又∵点A(2m-6,0),B(4,0)分别在原点两侧,
∴2m-6<0,
∴m<3,
<m<3;
(2)∵C是AB的中点且为整点,
∴C点横坐标为:=m-1,且m-1为整数,
∴m为整数,由(1)知<m<3,
∴m=2,
∴C(1,0),BC=4-1=3,
当△BCD为等腰直角三角形时,分三种情况:
①如果∠DCB=90°,DC=BC,则D1(1,3),D2(1,-3);
②如果∠DBC=90°,DB=CB,则D3(4,3),D4(4,-3);
③如果∠CDB=90°,CD=BD,则D在BC的垂直平分线上,
则D点的横坐标为:=,不是整数,不合题意,舍去,
综上,可知所求点D的坐标为:D1(1,3),D2(1,-3),D3(4,3),D4(4,-3)。

据专家权威分析,试题“在平面直角坐标系中,已知x轴上两个点A(2m-6,0),B(4,0)分别在..”主要考查你对  直线,线段,射线,等腰三角形的性质,等腰三角形的判定  等考点的理解。关于这些考点的“档案”如下:

直线,线段,射线等腰三角形的性质,等腰三角形的判定

考点名称:直线,线段,射线

  • 基本概念:
    直线:一根拉得很紧的线,就给我们以直线的形象,直线是直的,并且是向两方无限延伸的。一条直线可以用一个小写字母表示。
    线段:直线上两个点和它们之间的部分叫做线段,这两个点叫做线段的端点。一条线段可用它的端点的两个大写字母来表示。
    射线:直线上一点和它一旁的部分叫做射线。这个点叫做射线的端点。一条射线可以用端点和射线上另一点来表示。
    注意:
    ①线和射线无长度,线段有长度。
    ②直线无端点,射线有一个端点,线段有两个端点。

  • 直线、射线、线段的基本性质:

    图形 表示法 端点 延长线 能否度量 基本性质
    直线 没有端点的一条线 一条线,
    不要端点
    可以向两边无限延长 两端都没有端点,可以无限延长,不可测量的线
    射线 只有一个端点的一条线 一条线,
    只有一边有端点
    一个 可以向一边无限延长 一端有端点,可以向一边无限延长,不可测量的线
    线段 两边都有端点的一条线 一条线,两边都有端点 两个 不能延长 两端都有端点,不能延长,可测量的线

  • 直线、射线、线段区别:
    直线没有端点,2边可无限延长;
    射线有1端有端点,另一端可无限延长;
    线段,有2个端点,而2个端点间的距离就是这条线段的长度。

    直线除了“直”这个特点外,还有一个很重要的特点,那就是它可以向两个方向无限延伸,永远没有尽头,所以,直线是不可能度量的。因此,在画直线时,要画出没有端点的直线,表示可以无限延伸;
    射线只有一个端点,可以向一个方向无限延伸,也永远没有尽头。所以,射线也是不可能度量的。直线上任意的一点可以把这条直线分成两条方向相反的射线,因此,射线是直线的一部分。虽然射线是直线的一部分,但由于它们都是不能度量的,所以,它们之间没有长短可以比较;
    线段有两个端点,它有一定的长度,可以度量。线段也是直线的一部分。

  • 各种图形表示方法:
    直线:一个小写字母或两个大写字母,但前面必须加“直线”两字,如:直线l,直线m;直线AB,直线CD。
    例:直线l;直线AB。
    射线:一个小写字母或端点的大写字母。和射线上的一个大写字母,前面必须加“射线”两字。如:射线a;射线OA。
    例:射线AB。
    线段:用表示端点的大写字母表示,如线段AB;用一个小写字母表示,如线段a。
    例:线段AB;线段a 。

考点名称:等腰三角形的性质,等腰三角形的判定

  • 定义:
    有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。

  • 等腰三角形的性质:
    1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
    2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
    3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
    4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
    5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
    6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
    7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐