已知:如图,OB、OC分别为定角∠AOD内的两条动射线(1)当OB、OC运动到如图的位置时,∠AOC+∠BOD=110°,∠AOB+∠COD=50°,求∠AOD的度数;(2)在(1)的条件下,射线OM、ON分别为∠AOB、-七年级数学

首页 > 考试 > 数学 > 初中数学 > 角的概念/2019-12-31 / 加入收藏 / 阅读 [打印]

题文

已知:如图,OB、OC分别为定角∠AOD内的两条动射线
(1)当OB、OC运动到如图的位置时,∠AOC+∠BOD=110°,∠AOB+∠COD=50°,求∠AOD的度数;
(2)在(1)的条件下,射线OM、ON分别为∠AOB、∠COD的平分线,当∠COB绕着点O旋转时,下列结论:①∠AOM-∠DON的值不变;②∠MON的度数不变。可以证明,只有一个是正确的,请你作出正确的选择并求值。

题型:解答题  难度:中档

答案

解:(1)∵∠AOC+∠BOD=∠AOB+∠COD+2∠BOC,
∠AOC+∠BOD=110°
∠AOB+∠COD=50°
∴110°=2∠BOC+50°
∴∠BOC=30°
∴∠AOD=∠BOC+∠AOB+∠COD=80°
(2) ②正确,∠MON=55°
∵OM、ON分别为∠AOB、∠COD的平分线
∴∠CON+∠BOM=(∠AOB+∠COD)=25°
∴∠MON=∠CON+∠BOM+∠BOC=25°+30°=55°

据专家权威分析,试题“已知:如图,OB、OC分别为定角∠AOD内的两条动射线(1)当OB、OC运动..”主要考查你对  角的概念 ,角平分线的定义   等考点的理解。关于这些考点的“档案”如下:

角的概念 角平分线的定义

考点名称:角的概念

  • 角的基本概念:
    从静态角度认识角:由一个点出发的两条射线组成的图形叫角;
    从动态角度认识角:一条射线绕着它的顶点旋转到另一个位置,则这两条射线组成的图像叫角。有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。
    ①因为射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边长无关。
    ②角的大小可以度量,可以比较。
    ③根据角的度数,角可以分为锐角、直角、钝角、平角、周角。
    角的表示:角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,如∠1,∠α,∠BAD等。

  • 角的分类
    根据角的度数,角可以分为锐角、直角、钝角、平角、周角。
    平角:180的角,当角的两边在一条直线上时,组成的角叫做平角。即射线OA绕点O旋转,当终边在始边OA的反向延长线上时所成的角;
    直角:90的角,即线OA绕点O旋转,当终边与始边垂直时所成的角,平角的一半叫做直角;
    锐角:大于0小于90的角,小于直角的角叫做锐角;
    钝角:大于90小于180的角,大于直角且小于平角的角叫做钝角。
    周角:360的角,即射线OA绕点O旋转,当终边与始边重合时所成的角。

    角的性质:
    ①角的大小与边的长短无关,只与构成角的两条射线的幅度大小有关;
    ②角的大小可以度量,可以比较;
    ③角可以参与运算。

    角的度量:
    角的度量有如下规定:把一个平角180等分,每一份就是1度的角,单位是度,用“。”,1度记作“1°”,n度记作“n°”。把1°的角60等分,每一份叫做1分的角,1分记作“1′”。把1′的角60等分,每一份叫做1秒的角,1秒记作“1″”。1°=60′=3600″。

考点名称:角平分线的定义

  • 角的平分线的定义
    一条射线把一个角分成两个相等的角,这条射线叫做这个角的平分线。

  • 角平分线的性质:
    角平分线上的点,到角两边的距离相等
    定理:
    角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
    逆定理:
    到角两边的距离相等的点在角平分线上。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐