如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC.(1)指出图中∠AOD与∠BOE的补角;(2)试说明∠COD与∠COE具有怎样的数量关系.-数学
题文
如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC. (1)指出图中∠AOD与∠BOE的补角; (2)试说明∠COD与∠COE具有怎样的数量关系. |
题文
如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AOC. (1)指出图中∠AOD与∠BOE的补角; (2)试说明∠COD与∠COE具有怎样的数量关系. |
题型:解答题 难度:中档
答案
(1)与∠AOD互补的角∠BOD、∠COD; 与∠BOE互补的角∠AOE、∠COE. (2)∠COD+∠COE=
又OE平分∠AOC,所以∠COE=
所以∠COD+∠COE=
所以∠COD+∠COE=
|
据专家权威分析,试题“如图,O是直线AB上一点,OC为任一条射线,OD平分∠BOC,OE平分∠AO..”主要考查你对 角平分线的定义 ,余角,补角 等考点的理解。关于这些考点的“档案”如下:
角平分线的定义 余角,补角
考点名称:角平分线的定义
角平分线的性质:
角平分线上的点,到角两边的距离相等
定理:
角平分线上的任意一点,到角两边的距离相等。垂直于两边为最短距离。角平分线能得到相同的两个角。三角形三条角平分线相交于一点,并且这一点到三边的距离相等。
逆定理:
到角两边的距离相等的点在角平分线上。
考点名称:余角,补角
余角:
如果两个角的和是一个直角,那么称这两个角互为余角,简称互余,也可以说其中一个角是另一个角的余角。
∠A +∠C=90°,∠A= 90°-∠C ,∠C的余角=90°-∠C 即:∠A的余角=90°-∠A
补角:
如果两个角的和是一个平角,那么这两个角叫互为补角.其中一个角叫做另一个角的补角
∠A +∠C=180°,∠A= 180°-∠C ,∠C的补角=180°-∠C 即:∠A的补角=180°-∠A
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |