如图,某船于上午8时在A处观测到灯塔B在北偏东南60°,该船以每小时20海里的速度向东航行到达C处,观察到灯塔B在北偏东30°,航行到D处,观察到灯塔B在北偏西30°,当轮船到达C-数学
题文
如图,某船于上午8时在A处观测到灯塔B在北偏东南60°,该船以每小时20海里的速度向东航行到达C处,观察到灯塔B在北偏东30°,航行到D处,观察到灯塔B在北偏西30°,当轮船到达C处时恰与灯塔B相距60海里,请你求该船到达C处和D处的时间,并说明理由. |
题文
如图,某船于上午8时在A处观测到灯塔B在北偏东南60°,该船以每小时20海里的速度向东航行到达C处,观察到灯塔B在北偏东30°,航行到D处,观察到灯塔B在北偏西30°,当轮船到达C处时恰与灯塔B相距60海里,请你求该船到达C处和D处的时间,并说明理由. |
题型:解答题 难度:中档
答案
由己知,得∠BAC=30°,∠ACB=120°,∠BCD=∠BDC=60° ∴∠ABC=∠BAC=30° ∴AC=BC=60(海里)∠CBD=60°(1分) ∴t1=60÷20=3(小时)(2分) ∴△BCD是等边三角形∴BC=CD=60(海里) ∴t2=60÷20=3(小时)t3=3+3=6(小时).(4分) 答:轮船到达C处是上午11时,轮船到达D处的时间是下午2时.(5分) 或轮船到达C处用了3小时,到达D处用了6小时. |
据专家权威分析,试题“如图,某船于上午8时在A处观测到灯塔B在北偏东南60°,该船以每小..”主要考查你对 角的概念 ,等边三角形 等考点的理解。关于这些考点的“档案”如下:
角的概念 等边三角形
考点名称:角的概念
角的基本概念:
从静态角度认识角:由一个点出发的两条射线组成的图形叫角;
从动态角度认识角:一条射线绕着它的顶点旋转到另一个位置,则这两条射线组成的图像叫角。有公共端点的两条射线组成的图形叫做角,这个公共端点叫做角的顶点,这两条射线叫做角的边。
①因为射线是向一方无限延伸的,所以角的两边无所谓长短,即角的大小与它的边长无关。
②角的大小可以度量,可以比较。
③根据角的度数,角可以分为锐角、直角、钝角、平角、周角。
角的表示:角可以用大写英文字母、阿拉伯数字或小写的希腊字母表示,如∠1,∠α,∠BAD等。
考点名称:等边三角形
性质:
①等边三角形是锐角三角形,等边三角形的内角都相等,且均为60°。
②等边三角形每条边上的中线、高线和所对角的平分线互相重合(三线合一)
③等边三角形是轴对称图形,它有三条对称轴,对称轴是每条边上的中线、高线 或对角的平分线所在的直线。
④等边三角形重心、内心、外心、垂心重合于一点,称为等边三角形的中心。(四心合一)
⑤等边三角形内任意一点到三边的距离之和为定值(等于其高)
判定方法:
①三边相等的三角形是等边三角形(定义)
②三个内角都相等(为60度)的三角形是等边三角形
③有一个角是60度的等腰三角形是等边三角形
④ 两个内角为60度的三角形是等边三角形
说明:可首先考虑判断三角形是等腰三角形。
等边三角形的性质与判定理解:
首先,明确等边三角形定义。三边相等的三角形叫做等边三角形,也称正三角形。
其次,明确等边三角形与等腰三角形的关系。等边三角形是特殊的等腰三角形,等腰三角形不一定是等边三角形。
等比三角形的尺规做法:
可以利用尺规作图的方式画出正三角形,其作法相当简单:先用尺画出一条任意长度的线段(这条线段的长度决定等边三角形的边长),再分别以线段二端点为圆心、线段为半径画圆,二圆汇交于二点,任选一点,和原来线段的两个端点画线段,则这二条线段和原来线段即构成一正三角形。
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |