如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD的关系,请你从所得的关系中任意选取一个加以说明.-七年级数学

首页 > 考试 > 数学 > 初中数学 > 点、线、面、体/2020-01-04 / 加入收藏 / 阅读 [打印]

题文

如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD的关系,请你从所得的关系中任意选取一个加以说明.

题型:解答题  难度:中档

答案

解:①∠BAP+∠APC+∠PCD=360°;
②∠APC=∠BAP+∠PCD;
③∠BAP=∠APC+∠PCD;
④∠PCD=∠APC+∠PAB.
如②,可作PE∥AB,(如图)

因为PE∥AB∥CD,
所以∠BAP=∠APE,∠EPC=∠PCD.
所以∠APE+∠EPC=∠BAP+∠PCD,
即∠APC=∠PAB+∠PCD.

关键过转折点作出平行线,根据两直线平行,内错角相等,或结合三角形的外角性质求证即可

据专家权威分析,试题“如图,AB∥CD,分别探讨下面四个图形中∠APC与∠PAB,∠PCD的关系,请你从..”主要考查你对  点、线、面、体   等考点的理解。关于这些考点的“档案”如下:

点、线、面、体

考点名称:点、线、面、体

  • 点动成线,线动成面,面动成体:
    长方体、正方体、圆柱、圆锥、球、棱柱、棱锥等都是几何体,几何体也简称
    包围着体的是,面有平的面和曲的面两种。
    夜晚流星划过天空时留下一道明亮的光线,节日的焰火画出的曲线组成优美的图案,这些都给我们以线的形象,面和面相交的地方形成线
    天上的星星、世界地图上的城市等都给我们以点的形象,线和线相交的地方是
    几何图形都是由点、线、面、体组成的,点是构成图形的基本元素。

  • 常见几何体的三视图:

  •  

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐