如图,已知ABCD,E,F是对角线BD所在直线上的两点,且AE∥CF,求证:CE∥AF。-八年级数学
题文
如图,已知ABCD,E,F是对角线BD所在直线上的两点,且AE∥CF,求证:CE∥AF。 |
答案
解:连结AC交EF于点O, ∵AE∥CF, ∴∠AED=∠CFB ∵AD=BC,AD∥BC, ∴∠ADB=∠CBD, ∴∠EDA= ∠FBC, ∴△ADE ≌△CBF, ∴ED=BF ∵OA=OC,OB=OD, ∴OE=OF, ∴四边形AFCE是平行四边形, ∴CE∥AF。 |
据专家权威分析,试题“如图,已知ABCD,E,F是对角线BD所在直线上的两点,且AE∥CF,求证..”主要考查你对 平行线的判定,平行四边形的性质 等考点的理解。关于这些考点的“档案”如下:
平行线的判定平行四边形的性质
考点名称:平行线的判定
- 平行线的概念:
在同一个平面内,不相交的两条直线叫做平行线。平行用符号“∥,如“AB∥CD”,读作“AB平行于CD”。
注意:
①平行线是无限延伸的,无论怎样延伸也不相交。
②当遇到线段、射线平行时,指的是线段、射线所在的直线平行。 平行线的判定平行线的判定公理:
(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
还有下面的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。判定方法的逆应用:
在同一平面内,两直线不相交,即平行。
两条直线平行于一条直线,则三条不重合的直线互相平行。
两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
6a⊥c,b⊥c则a∥b。
考点名称:平行四边形的性质
- 平行四边形的概念:
两组对边分别平行的四边形叫做平行四边形。
平行四边形用符号“□ABCD,如平行四边形ABCD记作“□ABCD”,读作ABCD”。
①平行四边形属于平面图形。
②平行四边形属于四边形。
③平行四边形中还包括特殊的平行四边形:矩形,正方形和菱形等。
④平行四边形属于中心对称图形。 平行四边形的性质:
主要性质
(矩形、菱形、正方形都是特殊的平行四边形。)
(1)如果一个四边形是平行四边形,那么这个四边形的两组对边分别相等。
(简述为“平行四边形的两组对边分别相等”)
(2)如果一个四边形是平行四边形,那么这个四边形的两组对角分别相等。
(简述为“平行四边形的两组对角分别相等”)
(3)如果一个四边形是平行四边形,那么这个四边形的邻角互补
(简述为“平行四边形的邻角互补”)
(4)夹在两条平行线间的平行线段相等。
(5)如果一个四边形是平行四边形,那么这个四边形的两条对角线互相平分。
(简述为“平行四边形的对角线互相平分”)
(6)连接任意四边形各边的中点所得图形是平行四边形。(推论)
(7)平行四边形的面积等于底和高的积。(可视为矩形)
(8)过平行四边形对角线交点的直线,将平行四边形分成全等的两部分图形。
(9)平行四边形是中心对称图形,对称中心是两对角线的交点.
(10)平行四边形不是轴对称图形,矩形和菱形是轴对称图形。
注:正方形,矩形以及菱形也是一种特殊的平行四边形,三者具有平行四边形的性质。
(11)平行四边形ABCD中(如图)E为AB的中点,则AC和DE互相三等分,一般地,若E为AB上靠近A的n等分点,则AC和DE互相(n+1)等分。
(12)平行四边形ABCD中,AC、BD是平行四边形ABCD的对角线,则各四边的平方和等于对角线的平方和。
(13)平行四边形对角线把平行四边形面积分成四等分。
(14)平行四边形中,两条在不同对边上的高所组成的夹角,较小的角等于平行四边形中较小的角,较大的角等于平行四边形中较大的角。
(15)平行四边形中,一个角的顶点向他对角的两边所做的高,与这个角的两边组成的夹角相等。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |