如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D.(1)若∠BAC=30°,求证:AD=BD;(2)若AP平分∠BAC且交BD于P,求∠BPA的度数.-七年级数学
题文
如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D. (1)若∠BAC=30°,求证:AD=BD; (2)若AP平分∠BAC且交BD于P,求∠BPA的度数. |
答案
(1)证明:∵∠BAC=30°,∠C=90°, ∴∠ABC=60°. 又∵BD平分∠ABC, ∴∠ABD=30°, ∴∠BAC=∠ABD, ∴BD=AD. (2)解法一:∵∠C=90°, ∴∠BAC+∠ABC=90°, ∴(∠BAC+∠ABC)=45°. ∵BD平分∠ABC,AP平分∠BAC, ∠BAP=∠BAC,∠ABP=∠ABC,即∠BAP+∠ABP=45° ∴∠APB=180°﹣45°=135°. 解法二:∵∠C=90°, ∴∠BAC+∠ABC=90°, ∴(∠BAC+∠ABC)=45°. ∵BD平分∠ABC,AP平分∠BAC, ∠DBC=∠ABC,∠PAC=∠BAC, ∴∠DBC+∠PAD=45°. ∴∠BPA=∠PDA+∠PAD =∠DBC+∠C+∠PAD =∠DBC+∠PAD+∠C =45°+90° =135°. |
据专家权威分析,试题“如图,已知:在直角△ABC中,∠C=90°,BD平分∠ABC且交AC于D.(1)若∠B..”主要考查你对 三角形的内角和定理,等腰三角形的性质,等腰三角形的判定 等考点的理解。关于这些考点的“档案”如下:
三角形的内角和定理等腰三角形的性质,等腰三角形的判定
考点名称:三角形的内角和定理
- 三角形的内角和定理及推论:
三角形的内角和定理:三角形三个内角和等于180°。
推论:
(1)直角三角形的两个锐角互余。
(2)三角形的一个外角等于和它不相邻的来两个内角的和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。
考点名称:等腰三角形的性质,等腰三角形的判定
- 定义:
有两条边相等的三角形,是等腰三角形,相等的两条边叫做腰,另一边叫做底边,两腰的夹角叫做顶角,腰和底边的夹角叫做底角。 等腰三角形的性质:
1.等腰三角形的两个底角度数相等(简写成“等边对等角”)。
2.等腰三角形的顶角的平分线,底边上的中线,底边上的高重合(简写成“等腰三角形的三线合一”)。
3.等腰三角形的两底角的平分线相等(两条腰上的中线相等,两条腰上的高相等)。
4.等腰三角形底边上的垂直平分线到两条腰的距离相等。
5.等腰三角形的一腰上的高与底边的夹角等于顶角的一半。
6.等腰三角形底边上任意一点到两腰距离之和等于一腰上的高(需用等面积法证明)。
7.等腰三角形是轴对称图形,只有一条对称轴,顶角平分线所在的直线是它的对称轴,等边三角形有三条对称轴。
8.等腰三角形中腰的平方等于高的平方加底的一半的平方
9.等腰三角形中腰大于高
10.等腰三角形底边延长线上任意一点到两腰距离之差等于一腰上的高(需用等面积法证明)等腰三角形的判定:
1.定义法:在同一三角形中,有两条边相等的三角形是等腰三角形。
2.判定定理:在同一三角形中,有两个角相等的三角形是等腰三角形(简称:等角对等边)。
3.顶角的平分线,底边上的中分线,底边上的高的重合的三角形是等腰三角形。
- 最新内容
- 相关内容
- 网友推荐
- 图文推荐
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14) |
[教师分享] 给远方姐姐的一封信 (2018-11-07) |
[教师分享] 伸缩门 (2018-11-07) |
[教师分享] 回家乡 (2018-11-07) |
[教师分享] 是风味也是人间 (2018-11-07) |
[教师分享] 一句格言的启示 (2018-11-07) |
[教师分享] 无规矩不成方圆 (2018-11-07) |
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07) |
[教师分享] 贪玩的小狗 (2018-11-07) |
[教师分享] 未命名文章 (2018-11-07) |