观察探索题:如图,已知三角形ABC,延长BC到D,过点C作CE∥AB.由于AB∥CE,所以可得到∠B=∠3和∠A=∠2.又因为∠1+∠2+∠3组成一个平角为180°,通过等量代换可以得到三角形ABC的三个内-七年级数学

题文

观察探索题:如图,已知三角形ABC,延长BC到D,过点C作CE∥AB.由于AB∥CE,所以可得到∠B=∠3和∠A=∠2.又因为∠1+∠2+∠3组成一个平角为180°,通过等量代换可以得到三角形ABC的三个内角的和为180°,即∠A+∠B+∠ACB=180°.
试根据以上叙述,写出已知、求证及说明∠A+∠B+∠ACB=180°的过程.
已知:延长三角形ABC的边BC到D,过C作CE∥AB.
求证:∠A+∠B+∠ACB=180°证明:
题型:证明题  难度:中档

答案

证明:∵CE∥AB
∴∠B=∠3,∠A=∠2
∵∠1+∠2+∠3=180°
∴∠A+∠B+∠ACB=180 °

据专家权威分析,试题“观察探索题:如图,已知三角形ABC,延长BC到D,过点C作CE∥AB.由于..”主要考查你对  三角形的内角和定理  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐