若一个三角形三个外角的度数之比为2:3:4,则与之对应的三个内角的度数的比为()A.5:3:1B.3:2:4C.4:3:2D.3:1:5-数学

题文

若一个三角形三个外角的度数之比为2:3:4,则与之对应的三个内角的度数的比为(  )
A.5:3:1B.3:2:4C.4:3:2D.3:1:5
题型:单选题  难度:偏易

答案

设一份为k°,则三个外角的度数分别为2k°,3k°,4k°,
根据三角形外角和定理,可知2k°+3k°+4k°=360°,得k°=40°,
三个外角分别为80°,120°和160°,
根据三角形外角与它相邻的内角互补,与之对应的三个内角的度数分别是100°,60°和20°,
即三个内角的度数的比为5:3:1.
故选A.

据专家权威分析,试题“若一个三角形三个外角的度数之比为2:3:4,则与之对应的三个内角的..”主要考查你对  三角形的内角和定理,三角形的外角性质  等考点的理解。关于这些考点的“档案”如下:

三角形的内角和定理三角形的外角性质

考点名称:三角形的内角和定理

  • 三角形的内角和定理及推论:
    三角形的内角和定理:三角形三个内角和等于180°。
    推论:
    (1)直角三角形的两个锐角互余。
    (2)三角形的一个外角等于和它不相邻的来两个内角的和。
    (3)三角形的一个外角大于任何一个和它不相邻的内角。
    注:在同一个三角形中:等角对等边;等边对等角;大角对大边;大边对大角。

考点名称:三角形的外角性质

  • 三角形的外角
    三角形的一条边的延长线和另一条相邻的边组成的角,叫做三角形的外角。

    ∠1是三角形的外角。

  • 三角形的外角特征:
    ①顶点在三角形的一个顶点上,如∠ACD的顶点C是△ABC的一个顶点;
    ②一条边是三角形的一边,如∠ACD的一条边AC正好是△ABC的一条边;
    ③另一条边是三角形某条边的延长线如∠ACD的边CD是△ABC的BC边的延长线。
     
    性质:
    ①. 三角形的外角与它相邻的内角互补。
    ②. 三角形的一个外角等于和它不相邻的两个内角的和。
    ③. 三角形的一个外角大于任何一个和它不相邻的内角。
    ④. 三角形的外角和等于360°。
    设三角形ABC 则三个外角和=(A+B)+(A+C)+(B+C)=360度。

    定理:三角形的一个外角等于不相邻的两个内角和。
    定理:三角形的三个内角和为180度。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐