下列命题中,是假命题的是()A.全等三角形对应边上的高线相等B.绝对值等于本身的数都是正数C.同位角相等,两直线平行D.若a=0,则ab=0-数学
题文
下列命题中,是假命题的是( )
|
题文
下列命题中,是假命题的是( )
|
题型:单选题 难度:中档
答案
A、根据全等三角形的性质可得,故正确; B、0的绝对值等于本身0,但不是正数,所以绝对值等于本身的数都是正数错误是假命题; C、符合平行线的判定,故正确; D、0乘以任何数都得0,所以若a=0,则ab=0,正确; 故选:B. |
据专家权威分析,试题“下列命题中,是假命题的是()A.全等三角形对应边上的高线相等B.绝..”主要考查你对 绝对值,有理数乘法,平行线的判定,全等三角形的性质,命题,定理 等考点的理解。关于这些考点的“档案”如下:
绝对值有理数乘法平行线的判定全等三角形的性质命题,定理
考点名称:绝对值
绝对值的有关性质:
①任何有理数的绝对值都是大于或等于0的数,这是绝对值的非负性;
②绝对值等于0的数只有一个,就是0;
③绝对值等于同一个正数的数有两个,这两个数互为相反数;
④互为相反数的两个数的绝对值相等。
绝对值的化简:
绝对值意思是值一定为正值,按照“符号相同为正,符号相异为负”的原则来去绝对值符号。
①绝对值符号里面为负,在去掉绝对值时必须要加一个负的符号老确保整个值为正值,也就是当:
│a│=a (a为正值,即a≥0 时);│a│=-a (a为负值,即a≤0 时)
②整数就找到这两个数的相同因数;
③小数就把这两个数同时扩大相同倍数成为整数,一般都是扩大10、100倍;
④分数的话就相除,得数是分数就是分子:分母,要是得数是整数,就这个数比1。
考点名称:有理数乘法
考点名称:平行线的判定
平行线的判定平行线的判定公理:
(1)两条直线被第三条直线所截,如果同位角相等,那么两直线平行。简称:同位角相等,两直线平行。
(2)两条直线被第三条直线所截,如果内错角相等,那么两直线平行。简称:内错角相等,两直线平行。
(3)两条直线被第三条直线所截,如果同旁内角互补,那么两直线平行。简称:同旁内角互补,两直线平行。
还有下面的判定方法:
(1)平行于同一条直线的两直线平行。
(2)垂直于同一条直线的两直线平行。
(3)平行线的定义。
判定方法的逆应用:
在同一平面内,两直线不相交,即平行。
两条直线平行于一条直线,则三条不重合的直线互相平行。
两直线平行,同位角相等。
两直线平行,内错角相等。
两直线平行,同旁内角互补。
6a⊥c,b⊥c则a∥b。
考点名称:全等三角形的性质
全等三角形的性质:
1.全等三角形的对应角相等。
2.全等三角形的对应边相等。
3.全等三角形的对应边上的高对应相等。
4.全等三角形的对应角的角平分线相等。
5.全等三角形的对应边上的中线相等。
6.全等三角形面积相等。
7.全等三角形周长相等。
8.全等三角形的对应角的三角函数值相等。
考点名称:命题,定理
命题的分类:
(按正确、错误与否分)分为真命题(正确的命题),假命题(错误的命题),
所谓正确的命题就是:如果题设成立,那么结论一定成立的命题。
所谓错误的命题就是:如果题设成立,不能证明结论总是成立的命题。
四种命题:
1.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题。
2.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的条件的否定和结论的否定,那么这两个命题叫做互否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的否命题。
3.对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论的否定和条件的否定,那么这两个命题叫做互为逆否命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆否命题。
相互关系:
1.四种命题的相互关系:原命题与逆命题互逆,否命题与原命题互否,原命题与逆否命题相互逆否,逆命题与否命题相互逆否,逆命题与逆否命题互否,逆否命题与否命题互逆。
2.四种命题的真假关系:
①两个命题互为逆否命题,它们有相同的真假性。
②两个命题为互逆命题或互否命题,它们的真假性没有关系(原命题与逆否命题同真同假,逆命题与否命题同真同假)
定理结构:
[家长教育] 孩子为什么会和父母感情疏离? (2019-07-14)
[教师分享] 给远方姐姐的一封信 (2018-11-07)
[教师分享] 伸缩门 (2018-11-07)
[教师分享] 回家乡 (2018-11-07)
[教师分享] 是风味也是人间 (2018-11-07)
[教师分享] 一句格言的启示 (2018-11-07)
[教师分享] 无规矩不成方圆 (2018-11-07)
[教师分享] 第十届全国教育名家论坛有感(二) (2018-11-07)
[教师分享] 贪玩的小狗 (2018-11-07)
[教师分享] 未命名文章 (2018-11-07)