阅读下列内容后,解答下列各题:几个不等于0的数相乘,积的符号由负因数的个数决定.例如:考查代数式(x-1)(x-2)的值与0的大小当x<1时,x-1<0,x-2<0,∴(x-1)(x-2)>0当1<x<2时,-数学

题文

阅读下列内容后,解答下列各题:几个不等于0的数相乘,积的符号由负因数的个数决定.
例如:考查代数式(x-1)(x-2)的值与0的大小
当x<1时,x-1<0,x-2<0,∴(x-1)(x-2)>0
当1<x<2时,x-1>0,x-2<0,∴(x-1)(x-2)<0
当x>2时,x-1>0,x-2>0,∴(x-1)(x-2)>0
综上:当1<x<2时,(x-1)(x-2)<0
当x<1或x>2时,(x-1)(x-2)>0
(1)填写下表:(用“+”或“-”填入空格处)
(2)由上表可知,当x满足______时,(x+2)(x+1)(x-3)(x-4)<0;
(3)运用你发现的规律,直接写出当x满足______时,(x-7)(x+8)(x-9)<0.
x<-2 -2<x<-1 -1<x<3 3<x<4 x>4
x+2 - + + + +
x+1 - - + + +
x-3 - - - + +
x-4 - - - - +
(x+2)(x+1)(x-3)(x-4) + -
题型:解答题  难度:中档

答案

(1)+,-,+;
(2)-2<x<-1或3<x<4;
(3)x<-8或7<x<9.

据专家权威分析,试题“阅读下列内容后,解答下列各题:几个不等于0的数相乘,积的符号由..”主要考查你对  一元一次不等式的应用  等考点的理解。关于这些考点的“档案”如下:

一元一次不等式的应用

考点名称:一元一次不等式的应用

  • 一元一次不等式的应用包括两个方面:
    1、通过一元一次不等式求字母的取值范围;
    2、列一元一次不等式解实际应用题。

  • 列不等式解应用题的一般步骤:
    (1)审题;
    (2)设未知数;
    (3)确定包含未知数的不等量关系;
    (4)列出不等式;
    (5)求出不等式的解集,检验不等式的解是否符合题意;
    (6)写出答案。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐