我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售.按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题-数学

题文

我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地销售.按计划,40辆汽车都要装运,每辆汽车只能装运同一种西瓜,且必须装满.根据下表提供的信息,解答以下问题:
西瓜种类 A B C
每辆汽车运载量(吨) 4 5 6
每吨西瓜获利(百元) 16 10 12
(1)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,求y与x的函数关系式;
(2)如果装运每种西瓜的车辆数都不少于10辆,那么车辆的安排方案有几种?并写出每种安排方案;
(3)若要是此次销售获利达到预期利润25万元,应采取怎样的车辆安排方案?
题型:解答题  难度:中档

答案

(1)根据题意得4x+5y+6(40-x-y)=200,整理得y=-2x+40,则y与x的函数关系式为y=-2x+40;

(2)设装运A种西瓜的车辆数为x辆,装运B种西瓜的车辆数为y辆,装运C种西瓜的车辆数为z辆,则x+y+z=40,

x+y+z=40
y=-2x+40

∴z=x,
∵x≥10,y≥10,z≥10,
∴有以下6种方案:
①x=z=10,y=20;装运A种西瓜的车辆数为10辆,装运B种西瓜的车辆数20辆,装运C种西瓜的车辆数为10辆;
②x=z=11,y=18;装运A种西瓜的车辆数为11辆,装运B种西瓜的车辆数为18辆,装运C种西瓜的车辆数为11辆;
③x=z=12,y=16;装运A种西瓜的车辆数为12辆,装运B种西瓜的车辆数为16辆,装运C种西瓜的车辆数为12辆;
④x=z=13,y=14;装运A种西瓜的车辆数为13辆,装运B种西瓜的车辆数为14辆,装运C种西瓜的车辆数为13辆;
⑤x=z=14,y=12;装运A种西瓜的车辆数为14辆,装运B种西瓜的车辆数为12辆,装运C种西瓜的车辆数为14辆;
⑥x=z=15,y=10;装运A种西瓜的车辆数为15辆,装运B种西瓜的车辆数为10辆,装运C种西瓜的车辆数为15辆;

(3)由题意得:1600×4x+1000×5y+1200×6z≥250000,
将y=-2x+40,z=x,代入得3600x+200000≥250000,解得x≥13
8
9

经计算当x=z=14,y=12;获利=250400元;
当x=z=15,y=10;获利=254000元;
故装运A种西瓜的车辆数为14辆,装运B种西瓜的车辆数为12辆,装运C种西瓜的车辆数为14辆;
或装运A种西瓜的车辆数为15辆,装运B种西瓜的车辆数为10辆,装运C种西瓜的车辆数为15辆.

据专家权威分析,试题“我市某西瓜产地组织40辆汽车装运完A,B,C三种西瓜共200吨到外地..”主要考查你对  一元一次不等式的应用  等考点的理解。关于这些考点的“档案”如下:

一元一次不等式的应用

考点名称:一元一次不等式的应用

  • 一元一次不等式的应用包括两个方面:
    1、通过一元一次不等式求字母的取值范围;
    2、列一元一次不等式解实际应用题。

  • 列不等式解应用题的一般步骤:
    (1)审题;
    (2)设未知数;
    (3)确定包含未知数的不等量关系;
    (4)列出不等式;
    (5)求出不等式的解集,检验不等式的解是否符合题意;
    (6)写出答案。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐