若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,-数学

题文

若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为“可连数”,例如32是“可连数”,因为32+33+34不产生进位现象;23不是“可连数”,因为23+24+25产生了进位现象,那么小于200的“可连数”的个数为 ______.
题型:填空题  难度:偏易

答案

个位需要满足:x+(x+1)+(x+2)<10,即x<
7
3
,x可取0,1,2三个数.
十位需要满足:y+y+y<10,即y<
10
3
,y可取0,1,2,3四个数(假设0n就是n)
因为是小于200的“可连数”,故百位需要满足:小于2,则z可取1一个数.
则小于200的三位“可连数”共有的个数=4×3×1=12;
小于200的二位“可连数”共有的个数=3×3=9;
小于200的一位“可连数”共有的个数=3.
故小于200的“可连数”共有的个数=12+9+3=24.

据专家权威分析,试题“若自然数n使得作竖式加法n+(n+1)+(n+2)均不产生进位现象,则称n为..”主要考查你对  一元一次不等式的应用  等考点的理解。关于这些考点的“档案”如下:

一元一次不等式的应用

考点名称:一元一次不等式的应用

  • 一元一次不等式的应用包括两个方面:
    1、通过一元一次不等式求字母的取值范围;
    2、列一元一次不等式解实际应用题。

  • 列不等式解应用题的一般步骤:
    (1)审题;
    (2)设未知数;
    (3)确定包含未知数的不等量关系;
    (4)列出不等式;
    (5)求出不等式的解集,检验不等式的解是否符合题意;
    (6)写出答案。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐