函数y=1-2x有意义,则x的取值范围是()A.x≥12B.x≠12C.x≤12D.x<12-数学

首页 > 考试 > 数学 > 初中数学 > 函数值/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

函数y=

1-2x
有意义,则x的取值范围是(  )
A.x≥
1
2
B.x≠
1
2
C.x≤
1
2
D.x<
1
2
题型:单选题  难度:中档

答案

根据题意得:1-2x≥0
解得x≤
1
2

故选C.

据专家权威分析,试题“函数y=1-2x有意义,则x的取值范围是()A.x≥12B.x≠12C.x≤12D.x<12-..”主要考查你对  函数值,二次根式的定义  等考点的理解。关于这些考点的“档案”如下:

函数值二次根式的定义

考点名称:函数值

  • 定义:
    函数的值是指自变量在其取值范围内取某个值时,函数与之对应的唯一确定的值。如当x=a时,函数有唯一确定的对应值,这个值就是当x=a时的函数值。

  • 函数值的性质:
    ①当函数式是由一个解析式表示时,欲求函数值,实质就是求代数式的值;
    ②当一只函数解析式,又给出函数值,欲求相应的自变量的值时,实质就是解方程;
    ③当给定函数值的一个取值范围,欲求相应的自变量的取值范围时,实质就是解不等式;
    ④当自变量确定时,函数值时唯一确定的,但当函数值唯一确定时,对应的自变量可以是多个,如y=x2-1,当x=3时,x=±2。

考点名称:二次根式的定义

  • 二次根式:
    我们把形如叫做二次根式。
    二次根式必须满足:
    含有二次根号“”;
    被开方数a必须是非负数。

    确定二次根式中被开方数的取值范围:
    要是二次根式有意义,被开方数a必须是非负数,即a≥0,由此可确定被开方数中字母的取值范围。

  • 二次根式性质:
    (1)a≥0 ; ≥0 (双重非负性 );

    (2)

    (3)
                                0(a=0);

    (4)

    (5)

  • 二次根式判定:
    ①二次根式必须有二次根号,如等;
    ②二次根式中,被开方数a可以是具体的一个数,也可以是代数式;
    ③二次根式定义中a≥0 是定义组成的一部分,不能省略;
    ④二次根式是一个非负数;
    ⑤二次根式与算术平方根有着内在的联系,(a≥0 )就表示a的算术平方根。

    二次根式的应用:
    主要体现在两个方面:
    (1)利用从特殊到一般,在由一般到特殊的重要思想方法,解决一些规律探索性问题;
    (2)利用二次根式解决长度、高度计算问题,根据已知量,求出一些长度或高度,或设计省料的方案,以及图形的拼接、分割问题。这个过程需要用到二次根式的计算,其实就是化简求值。