某港受潮汐的影响,近日每天24小时港内的水深变化大体如图所示,一艘货轮于上午7时在该港口码头开始卸货,计划当天卸完货后离港,已知这艘货轮卸完货后吃水深度为2.5米(吃水-八年级数学

首页 > 考试 > 数学 > 初中数学 > 函数的图像/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

某港受潮汐的影响,近日每天24 小时港内的水深变化大体如图所示,一艘货轮于上午7时在该港口码头开始卸货,计划当天卸完货后离港,已知这艘货轮卸完货后吃水深度为2.5米(吃水深度即船底离水面的距离),该港口规定:为保证航行安全,只有当船底与港内水底间的距离不少于3.5米,才能进出该港。  
1)要使该船在当天卸完货,并安全出港,则出港时水深不能少于多少米?
(2)卸货时间最多只能用多长时间?

题型:解答题  难度:中档

答案

解:(1)出港时水深不能少于6 米;
(2)卸货时最多只能用8 小时。

据专家权威分析,试题“某港受潮汐的影响,近日每天24小时港内的水深变化大体如图所示,..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐