如图,是著名的艾宾浩斯遗忘曲线,观察图象并回答下列问题(1)在这个图形所表示的变化过程中自变量、因变量各是什么?2小时后,记忆大约保持了多少?(2)图中点A表示的意义是什么-七年级数学

首页 > 考试 > 数学 > 初中数学 > 函数的图像/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

如图,是著名的艾宾浩斯遗忘曲线,观察图象并回答下列问题
(1)在这个图形所表示的变化过程中自变量、因变量各是什么?2小时后,记忆大约保持了多少?
(2)图中点A表示的意义是什么?
(3)图中的遗忘曲线还告诉你什么相关信息?请写出其中一条信息.
题型:解答题  难度:中档

答案

解:(1)根据图象可知:记忆的保存量随时间的变化而变化,
∴在这个图形所表示的变化过程中自变量是时间、因变量是记忆的保持量,
2小时后,记忆大约保持了40%;
(2)图中点A表示的意义是15小时后,记忆的保持量是多少;
(3)图中的遗忘曲线还告诉我随时间的加长,人的记忆保持量会逐渐减少,两个小时内较少的最快.

据专家权威分析,试题“如图,是著名的艾宾浩斯遗忘曲线,观察图象并回答下列问题(1)在这..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐