如图1,在平面直角坐标系中,将?ABCD放置在第一象限,且AB∥x轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m-数学

首页 > 考试 > 数学 > 初中数学 > 函数的图像/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

如图1,在平面直角坐标系中,将?ABCD放置在第一象限,且AB∥x轴.直线y=-x从原点出发沿x轴正方向平移,在平移过程中直线被平行四边形截得的线段长度l与直线在x轴上平移的距离m的函数图象如图2所示,那么AD的长为______.
题型:填空题  难度:偏易

答案

①当AB>3时如图1:

由图可知:OE=4,OF=7,DG=2

2

∴EF=AG=OF-OE=3
∵直线y=-x
∴∠AGD=∠EFD=45°
∴△AGD是等腰直角三角形
∴DH=GH=

2
2
DG=

2
2
×2

2
=2
∴AH=AG-GH=3-2=1
∴AD=

DH2+AH2
=

12+22
=

5

②当AB=3时,如图2:

∵DH=2,AH=1
∴tan∠DAB=
DH
AH
=2
由图可知:OE=4,OM=8,
∴AG=EM=OM-OE=8-4=4
同①可得,DH=GH
∵tan∠DAB=2
∴AH=
DH
tan∠DAB
=
DH
2

∴AG=AH+GH=
3
2
DH=4
∴DH=GH=4-
8
3
=
4
3

∴AD=

AH2+GH2
=

(
4
3
)2+(
8
3
)2
=
4

5
3

据专家权威分析,试题“如图1,在平面直角坐标系中,将?ABCD放置在第一象限,且AB∥x轴.直..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐