如图,直线y=kx+6与x轴y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0).(1)求k的值;(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出-数学

首页 > 考试 > 数学 > 初中数学 > 函数的图像/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

如图,直线y=kx+6与x轴y轴分别交于点E、F,点E的坐标为(-8,0),点A的坐标为(-6,0).
(1)求k的值;
(2)若点P(x,y)是第二象限内的直线上的一个动点,在点P的运动过程中,试写出△OPA的面积S与x的函数关系式,并写出自变量x的取值范围.
题型:解答题  难度:中档

答案

(1)∵点E的坐标为(-8,0),且点E在直线y=kx+6上,
∴0=-8k+6,
解得,k=
3
4


(2)∵点P在直线EF上,
∴P(x,
3
4
x+6).
∵点P(x,y)是第二象限内的直线上的一个动点,
∴-8<x<0,
3
4
x+6>0.
∵点A的坐标为(-6,0),
∴OA=6,
∴S=
1
2
OA?|
3
4
x+6|=
1
2
×6×(
3
4
x+6)=
9
4
x+18(-8<x<0),即S=
9
4
x+18(-8<x<0).
答:(1)k的值是
3
4

(2)△OPA的面积S与x的函数关系式是S=
9
4
x+18,自变量x的取值范围是-8<x<0.

据专家权威分析,试题“如图,直线y=kx+6与x轴y轴分别交于点E、F,点E的坐标为(-8,0),..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐