已知△ABC中,∠C=90°,AC=8cm,BC=6cm,动点P从C点出发,以每秒1cm的速度,沿CA、AB运动到B点.(1)设点P从点C开始运动的路程为xcm,△BCP面积是ycm2,把y表示成x的函数;(2)是否-数学

首页 > 考试 > 数学 > 初中数学 > 函数的图像/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

已知△ABC中,∠C=90°,AC=8cm,BC=6cm,动点P从C点出发,以每秒1cm的速度,沿CA、AB运动到B点.
(1)设点P从点C开始运动的路程为xcm,△BCP面积是ycm2,把y表示成x的函数;
(2)是否存在点P,使S△BCP=
1
4
S△ABC?若存在,求出此时从C出发到P的时间;若不存在,请说明理由.
题型:解答题  难度:中档

答案

(1)①当0<x≤8时,即当0<P点在AC上,
∴PC=x,
∵∠ACB=90°,BC=6cm,
∵△BCP的面积为ycm2
∴y=
1
2
BC?x,
即y=3x;
②当8<x<18时,P点在AB上,
∵∠ACB=90°,BC=6cm,AC=8cm,
∴AB=10,
∴BP=18-x,
作CD⊥AB,
∴△ABC∽△CBD,
∴AC:CD=AB:BC,
∴CD=
24
5

∵△BCP的面积为ycm2
∴y=(18-x)?
24
5
×
1
2

∴y=-
12
5
(18-x);

(2)∵BC=6cm,AC=8cm,
∴△ABC的面积=24cm2
∴△BCP的面积为:24×
1
4
=6,
①P点在AB上,
∴6=-
12
5
(18-x)
解得:x=
31
2

∵点P从C点出发的速度为1cm/秒,
31
2
÷1=
31
2
秒,
∴从C点出发
31
2
秒钟时,△BCP的面积为△ABC的
1
4

②P点在AC上,
∴6=3x,
∴x=2,
∵点P从C点出发的速度为1cm/秒,
∴2cm÷1cm/秒=2秒,
∴从C点出发2秒钟时,△BCP的面积为△ABC的
1
4

答:从C点出发2秒或
31
2
秒钟时,△BCP的面积为△ABC的
1
4

据专家权威分析,试题“已知△ABC中,∠C=90°,AC=8cm,BC=6cm,动点P从C点出发,以每秒1c..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐