如图,在矩形ABCD中,AB=2,BC=4.将矩形ABCD绕点C沿顺时针方向旋转90°后,得到矩形FGCE(点A、B、D的对应点分别为点F、G、E).动点P从点B开始沿BC-CE运动到点E后停止,动点Q从-数学

首页 > 考试 > 数学 > 初中数学 > 函数的图像/2019-03-20 / 加入收藏 / 阅读 [打印]

题文

如图,在矩形ABCD中,AB=2,BC=4.将矩形ABCD绕点C沿顺时针方向旋转90°后,得到矩形FGCE(点A、B、D的对应点分别为点F、G、E).动点P从点B开始沿BC-CE运动到点E后停止,动点Q从点E开始沿EF-FG运动到点G后停止,这两点的运动速度均为每秒1个单位.若点P和点Q同时开始运动,运动时间为x(秒),△APQ的面积为y,则能够正确反映y与x之间的函数关系的图象大致是(  )
A.B.C.D.

题型:单选题  难度:偏易

答案

①如图1,延长AD交EF于H,延长FG与BA的延长线交于点M.
当0≤x≤4时,y=6×4-
1
2
×2?x-
1
2
(6-x)?x-
1
2
×(4-x+2)×6=
1
2
x2-x+6=
1
2
(x-1)2+
11
2

此时的函数图象是开口向上的抛物线的一部分,且顶点坐标是(1,
11
2
).
故C、D选项错误;
②点Q在GF上时,4<x≤6,
BP=x,MQ=6+4-x=10-x,
△APQ的面积为y=S梯形MBPQ-S△BPA-S△AMQ
=
1
2
(x+10-x)×4-
1
2
?2?x-
1
2
(10-x)?2,
=10,
综上所述,y=

y=
1
2
x2-x+6(0≤x≤4)
10(4<x≤6)

故选:A.

据专家权威分析,试题“如图,在矩形ABCD中,AB=2,BC=4.将矩形ABCD绕点C沿顺时针方向旋..”主要考查你对  函数的图像  等考点的理解。关于这些考点的“档案”如下:

函数的图像

考点名称:函数的图像

  • 函数图象的概念:
    对于一个函数,如果把自变量x和函数y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出相应的点,这些点所组成的图形,就是这个函数的图象.

  • 由函数解析式画其图象的一般步骤:
    ①列表:列表给出自变量与函数的一些对应值;
    ②描点:以表中每对对应值为坐标,在坐标平面内描出相应的点;
    ③连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来.

    利用函数的图象解决实际问题,其关键是正确识别横轴和纵轴的意义,正确理解函数图象的性质,正确地识图、用图.

    函数图象上的点的坐标与其解析式之间的关系:
    ①由图象的定义可知图象上任意一点P(x,y)中的x,y是解析式方程的一个解,反之,以解析式方程的任意一个解为坐标的点一定在函数图象上;
    ②通常判定点是否在函数图象上的方法是:将这个点的坐标代入函数解析式,如果满足函数解析式,这个点就在函数的图象上,如果不满足函数解析式,这个点就不在其函数的图象上,反之亦然;
    ③两个函数图像的交点就是饿两个函数解析式所组成的方程组的解。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐