如图,在平面直角坐标系xOy中,Rt△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知OA=4OB,AC=2BC=25.(1)求点A、B、C的坐标;(2)若点C关于原点的对称点为C′,试问在AB-数学

题文

如图,在平面直角坐标系xOy中,Rt△ABC的A、B两个顶点在x轴上,顶点C在y轴的负半轴上.已知OA=4OB,AC=2BC=2

5

(1)求点A、B、C的坐标;
(2)若点C关于原点的对称点为C′,试问在AB的垂直平分线上是否存在一点G,使得△GBC′的周长最小?若存在,求出点G的坐标和最小周长;若不存在,请说明理由.
(3)设点P是直线BC上异于点B、点C的一个动点,过点P作x轴的平行线交直线AC于点Q,过点Q作QM垂直于x轴于点M,再过点P作PN垂直于x轴于点N,得到矩形PQMN.则在点P的运动过程中,当矩形PQMN为正方形时,求该正方形的边长.
题型:解答题  难度:中档

答案

(1)设OB=k(k>0),则OA=4k,AB=5k,
∵AC=2BC=2

5
,∠ACB=90°,
∴(2

5
2+(

5
2=(5k)2
解得:k=1,
∴OB=1,OA=4,
∴A(-4,0),B(1,0),
∵OC=

CB2+OB2
=2,
∴C(0,-2);

(2)如图1,连接AC′,由几何知识知AC′与AB的垂直平分线l的交点即为△GBC′的周长最小时的点G.
连接GB,BC′,
∵点C′与点C关于原点对称,且C(0,-2),
∴C′(0,2),
∵A(-4,0),B(1,0),
∴直线AC′的解析式为:y=
1
2
x+2,
直线l的解析式为:x=-
3
2

∴点G(-
3
2
5
4
),
∵BC′=

12+22
=

5
,AC′=

42+22
=2

5

∴△GBC′的最小周长为:
GB+GC′+BC′=AC′+BC′=3

5


(3)由图易知点P不可能在直线BC的点B右上方.
当点P在线段BC之间时(如图2),
设正方形PQMN的边长为t.
∵A(-4,0),B(1,0),C(0,-2)
∴直线AC的解析式为:y=-
1
2
x-2,
直线BC的解析式为:y=2x-2,
∴点P(
2-t
2
,-t),点Q(2t-4,-t),
∴点N(
2-t
2
,0),点M(2t-4,0),
∴MN=-2t+4+
2-t
2
=t,解得t=
10
7

当点P在直线BC的左下方时,同理可得点N(
2-t
2
,0),点M(2t-4,0),此时
MN=2t-4-
2-t
2
=t,解得t=
10
3

综上所述,正方形PQMN的边长为
10
7
10
3

据专家权威分析,试题“如图,在平面直角坐标系xOy中,Rt△ABC的A、B两个顶点在x轴上,顶..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐