如图1,直线y=-33x+3与两坐标轴交于A、B,以点M(1,0)为圆心,MO为半径作小⊙M,又以点M为圆心、MA为半径作大⊙M交坐标轴于C、D.(1)求证:直线AB是小⊙M的切线.(2)连接BM,若小⊙-数学

题文

如图1,直线y=-

3
3
x+

3
与两坐标轴交于A、B,以点M(1,0)为圆心,MO为半径作小⊙M,又以点M为圆心、MA为半径作大⊙M交坐标轴于C、D.
(1)求证:直线AB是小⊙M的切线.
(2)连接BM,若小⊙M以2单位/秒的速度沿x轴向右平移,大⊙M以1单位/秒的速度沿射线BM方向平移,问:经过多少秒后,两圆相切?
(3)如图2,作直线BE∥x轴交大⊙M于E,过点B作直线PQ,连接PE、PM,使∠EPB=120°,请你探究线段PB、PE、PM三者之间的数量关系.
题型:解答题  难度:中档

答案

(1)∵直线y=-

3
3
x+

3
与两坐标轴交于A、B,∴A(3,0),B(0,

3
),MO=1,
过M作MF垂直AB于F,
则∠MFA=∠BOA=90°,
∵∠FAM=∠OAB,
∴△MFA∽△BOA,
AM
AB
=
MF
OB

∵A(3,0),B(0,

3
),M(1,0),
∴OA=3,OB=

3
,OM=1,
∴AM=3-1=2,由勾股定理得:AB=2

3

2
2

3
=
MF

3

MF=1=OM,
∵MF⊥AB,
∴直线AB是小⊙M的切线.

(2)小⊙M以2单位/秒的速度沿x轴向右平移,圆心M(1,0),则移动t秒后的圆心变为(2t+1,0);
因为B(0,

3
),M(1,0),
所以直线BM的解析式为:y=-

3
x+

3

又因为大⊙M以1单位/秒的速度沿射线BM方向平移,圆心M(1,0),则移动t秒后的圆心变为(1+
1
2
t,-

3
2
t),
①当两圆外切时,两圆心距离为两圆半径的和即:

3
4
t2+
9
4
t2
=OM+MA=OA=3,
解得t=

3
秒,
②当两圆内切时,两圆心距离为两圆半径的差即:

3
4
t2+
9
4
t2
=1,
解得t=

3
3
秒,

(3)如下图作辅助线:ME=2,OB=

3
,在△BCM中,∠BMO=60°,同理∠EMA=60°,
则∠BME=60°,
又∵∠EPB=120°,
∴∠EPB+∠BME=180°,
∴PBME四点共圆,
∵BM=ME,
∴∠BPM=∠EPM=60°,
在PM上截取PN=PE,连接NE,
∵∠EPM=60°,PE=PN,
∴△PNE是等边三角形,
∴PE=EN,∠PEN=60°,
∴∠ENM=60°+60°=120°=∠EPB,
∵∠PBE=∠NME(在同圆或等圆中,同弧所对的圆周角相等),
在△PBE和△NME中

∠EPB=∠MNE
∠PBE=∠EMN
PE=EN

∴△PBE≌△NME(AAS),
∴PB=NM,
∴PM=PN+NM=PE+PB.
∴PB、PE、PM三者之间的数量关系为:PM=PB+PE.

据专家权威分析,试题“如图1,直线y=-33x+3与两坐标轴交于A、B,以点M(1,0)为圆心,MO..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐