如图,直线l的解析式为y=-43x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、-数学

题文

如图,直线l的解析式为y=-
4
3
x+4,它与x轴、y轴分别相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤3)
(1)求A、B两点的坐标;
(2)以MN为对角线作矩形OMPN,记△MPN和△OAB重合部分的面积为S,试探究S与t之间的函数关系;
(3)当S=2时,是否存在点R,使△RNM∽△AOB?若存在,求出R的坐标;若不存在,请说明理由.
题型:解答题  难度:中档

答案

(1)当y=0时,0=-
4
3
x+4
解得x=3,
即A(3,0),
当x=0时,y=4
即B(0,4);

(2)Ⅰ当点P在直线AB左边时,
∵矩形OMPN,
∴NP=OM=t
∵m∥l
∴△OMN∽△OAB
OM
OA
=
ON
OB

t
3
=
ON
4

∴PM=ON=
4
3
t,
∴s1=
1
2
PN?PM=
1
2
?t?
4
3
t=
2
3
t2(0<t≤
3
2
),

Ⅱ当点P在直线AB右边时,
∵OM=t,
∴AM=3-t,
∴ME=
4
3
(3-t),
PE=
4
3
t-
4
3
(3-t)=
8
3
t-4,
PF=
3
4
-(
8
3
t-4)=2t-3,
∴s2=
1
2
PN?PM-
1
2
PE?PF,
=
1
2
t?
4
3
t-
1
2
8
3
t-4)(2t-3)=-2t2+8t-6(
3
2
<t≤3),
综上所述:s1=
2
3
t2(0<t≤
3
2
),或s2=-2t2+8t-6(
3
2
<t≤3);

(3)当s1=
2
3
t2=2时,t=

3
3
2
,舍去,
当s2=-2t2+8t-6=2时,t1=t2=2,
此时M(2,0),N(0,
8
3
),
∴存在R1和R2使△RNM∽△AOB,
∴∠RNM=∠AOB=90°,∠R1MN=∠ABO=∠MNO,
∴R1M∥y轴,
∴R1H1=OM=2,
∴NH1=2×
3
4
=
3
2

∴OH1=
8
3
+
3
2
=
25
6

∴R1(2,
25
6
),
∴R2H2=R1H1=2,NH2=NH1=
3
2

∴OH2=
8
3
-
3
2
=
7
6

∴R2(-2,
7
6
),
综上所述:R1(2,
25
6
)或R2(-2,
7
6
).

据专家权威分析,试题“如图,直线l的解析式为y=-43x+4,它与x轴、y轴分别相交于A、B两点..”主要考查你对  求一次函数的解析式及一次函数的应用  等考点的理解。关于这些考点的“档案”如下:

求一次函数的解析式及一次函数的应用

考点名称:求一次函数的解析式及一次函数的应用

  • 待定系数法求一次函数的解析式:
    先设出函数解析式,再根据条件确定解析式中的未知系数,从而得到函数的解析式的方法。

    一次函数的应用:
    应用一次函数解应用题,一般是先写出函数解析式,在依照题意,设法求解。
    (1)有图像的,注意坐标轴表示的实际意义及单位;
    (2)注意自变量的取值范围。

  • 用待定系数法求一次函数解析式的四个步骤:
    第一步(设):设出函数的一般形式。(称一次函数通式)
    第二步(代):代入解析式得出方程或方程组。
    第三步(求):通过列方程或方程组求出待定系数k,b的值。
    第四步(写):写出该函数的解析式。

    一次函数的应用涉及问题:
    一、分段函数问题
    分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符
    合实际。

    二、函数的多变量问题
    解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻
    求可以反映实际问题的函数

    三、概括整合
    (1)简单的一次函数问题:①建立函数模型的方法;②分段函数思想的应用。
    (2)理清题意是采用分段函数解决问题的关键。

    生活中的应用:

    1.当时间t一定,距离s是速度v的一次函数。s=vt。
    2.如果水池抽水速度f一定,水池里水量g是抽水时间t的一次函数。设水池中原有水量S。g=S-ft。
    3.当弹簧原长度b(未挂重物时的长度)一定时,弹簧挂重物后的长度y是重物重量x的一次函数,即y=kx+b(k为任意正数)

  • 一次函数应用常用公式:
    1.求函数图像的k值:(y1-y2)/(x1-x2)
    2.求与x轴平行线段的中点:(x1+x2)/2
    3.求与y轴平行线段的中点:(y1+y2)/2
    4.求任意线段的长:√[(x1-x2)2+(y1-y2)2 ]
    5.求两个一次函数式图像交点坐标:解两函数式
    两个一次函数 y1=k1x+b1; y2=k2x+b2 令y1=y2 得k1x+b1=k2x+b2 将解得的x=x0值代回y1=k1x+b1 ; y2=k2x+b2 两式任一式 得到y=y0 则(x0,y0)即为 y1=k1x+b1 与 y2=k2x+b2 交点坐标
    6.求任意2点所连线段的中点坐标:[(x1+x2)/2,(y1+y2)/2]
    7.求任意2点的连线的一次函数解析式:(x-x1)/(x1-x2)=(y-y1)/(y1-y2) (若分母为0,则分子为0)
    (x,y)为 + ,+(正,正)时该点在第一象限
    (x,y)为 - ,+(负,正)时该点在第二象限
    (x,y)为 - ,-(负,负)时该点在第三象限
    (x,y)为 + ,-(正,负)时该点在第四象限
    8.若两条直线y1=k1x+b1//y2=k2x+b2,则k1=k2,b1≠b2
    9.如两条直线y1=k1x+b1⊥y2=k2x+b2,则k1×k2=-1
    10.
    y=k(x-n)+b就是直线向右平移n个单位
    y=k(x+n)+b就是直线向左平移n个单位
    y=kx+b+n就是向上平移n个单位
    y=kx+b-n就是向下平移n个单位
    口决:左加右减相对于x,上加下减相对于b。
    11.直线y=kx+b与x轴的交点:(-b/k,0) 与y轴的交点:(0,b)

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐