有若干个数,第一个记为a1,第二个记为a2,第三个记为a3….若a1=-12,从第2个数起,每个数都等于“1与它前面那个数的差的倒数”.(1)计算a2,a3,a4的值.(2)根据以上计算结果,直-数学

首页 > 考试 > 数学 > 初中数学 > 倒数/2019-02-13 / 加入收藏 / 阅读 [打印]

题文

有若干个数,第一个记为a1,第二个记为a2,第三个记为a3….若a1=-
1
2
,从第2个数起,每个数都等于“1与它前面那个数的差的倒数”.
(1)计算a2,a3,a4的值.
(2)根据以上计算结果,直接写出a1998,a2000的值.
题型:解答题  难度:中档

答案

(1)∵a1=-
1
2

∴a2=
1
1+
1
2
=
2
3

a3=
1
1-
2
3
=3,
a4=
1
1-3
=-
1
2


(2)∵1998=666×3,2000=666×3+2,
∴a1998=a3=3,a2000=a2=
2
3

据专家权威分析,试题“有若干个数,第一个记为a1,第二个记为a2,第三个记为a3….若a1=-..”主要考查你对  倒数,探索规律  等考点的理解。关于这些考点的“档案”如下:

倒数探索规律

考点名称:倒数

  • 倒数的定义:
    如果两个数的乘积等于1,那么这两个数就叫做互为倒数。

  • 倒数性质
    (1)若a、b互为倒数,则ab=1,或,反之也成立;
    (2)0没有倒数;
    (3)乘积为-1的两个数互为负倒数,即ab=-1,则ab互为负倒数,反之也成立。

    倒数的特点
    一个正实数(1除外)加上它的倒数 一定大于2。
    理由:a/b,b/a为倒数当a>b时a/b一定大于1,可写为1+(a-b)/b。因为:
       b/a+(a-b)/a
    =b×b/a×b+(a÷b-b×b)/ab
    =(a×a-b×b+b×b)/ab
    =a×a/a×b,
    又因为a>b,
    所以a·a>a·b,
    所以a·a/a·b>1,
    所以1+(a-b)/b+a·a/a·b>2,
    所以一个正实数加上它的倒数一定大于2。
    当b>a时也一样。
    同理可证,一个负实数(-1除外)加上它的倒数一定小于-2。

  • 倒数的求法:
    1.求一个分数的倒数,例如3/4,我们只须把3/4这个分数的分子和分母交换位置,即得3/4的倒数为4/3。

    2.求一个整数的倒数,只须把这个整数看成是分母为1的分数,然后再按求分数倒数的方法即可得到。
    如12,即12/1,再把12/1这个分数的分子和分母交换位置,把分子做分母,分母做分子,则有1/12。 即12倒数是1/12。
    说明:倒数是本身的数是1和-1。(0没有倒数)

    把0.25化成分数,即1/4
    再把1/4这个分数的分子和分母交换位置,把原来的分子做分母,原来的分母做分子.则是4/1
    再把4/1化成整数,即4
    所以0.25是4的倒数。也可以说4是0.25的倒数
    也可以用1去除以这个数,例如0.25
    1/0.25等于4
    所以0.25的倒数4.
    因为乘积是1的两个数互为倒数。
    分数、整数也都使不完整用这种规律。

考点名称:探索规律

  • 探索规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律。揭示的规律,常常包含着事物的序列号。所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘。
    掌握探究的一般方法是解决此类问题的关键。
    (1)掌握探究规律的方法,可以通过具体到抽象、特殊到一般的方法,有时通过类比、联想,还要充分利用已知条件或图形特征进行透彻分析,从中找出隐含的规律;
    (2)恰当合理的联想、猜想,从简单的、局部的特殊情况到一般情况是基本思路,经过归纳、提炼、加工,寻找出一般性规律,从而求解问题。

  • 探索规律题题型和解题思路:
    1.探索条件型:结论明确,需要探索发现使结论成立的条件的题目;
    探索条件型往往是针对条件不充分、有变化或条件的发散性等情况,解答时要注意全面性,类似于讨论;解题应从结论着手,逆推其条件,或从反面论证,解题过程类似于分析法。

    2.探索结论型:给定条件,但无明确的结论或结论不唯一,而要探索发现与之相应的结论的题目;
    探索结论型题的特点是结论有多种可能,即它的结论是发散的、稳定的、隐蔽的和存在的;
    探索结论型题的一般解题思路是:
    (1)从特殊情形入手,发现一般性的结论;
    (2)在一般的情况下,证明猜想的正确性;
    (3)也可以通过图形操作验证结论的正确性或转化为几个熟悉的容易解决的问题逐个解决。
    3.探索规律型:在一定的条件状态下,需探索发现有关数学对象所具有的规律性或不变性的题目;
    图形运动题的关键是抓住图形的本质特征,并仿照原题进行证明。在探索递推时,往往从少到多,从简单到复杂,要通过比较和分析,找出每次变化过程中都具有规律性的东西和不易看清的图形变化部分。

    4.探索存在型:在一定的条件下,需探索发现某种数学关系是否存在的题目.而且探索题往往也是分类讨论型的习题,无论从解题的思路还是书写的格式都应该让学生明了基本的规范,这也是数学学习能力要求。
    探索存在型题的结论只有两种可能:存在或不存在;
    存在型问题的解题步骤是:
    ①假设存在;
    ②推理得出结论(若得出矛盾,则结论不存在;若不得出矛盾,则结论存在)。
     解答探索题型,必须在缜密审题的基础上,利用学具,按照要求在动态的过程中,通过归纳、想象、猜想,进行规律的探索,提出观点与看法,利用旧知识的迁移类比发现接替方法,或从特殊、简单的情况入手,寻找规律,找到接替方法;解答时要注意方程思想、函数思想、转化思想、分类讨论思想、数形结合思想在解题中的应用;因此其成果具有独创性、新颖性,其思维必须严格结合给定条件结论,培养了学生的发散思维,这也是数学综合应用的能力要求。

  • 最新内容
  • 相关内容
  • 网友推荐
  • 图文推荐